SYNTHESIS AND REACTIVITY OF MIXED
 PENTAFLUOROPHENYLPALLADIUM(I)-PLA'INUM(I) DERIVATIVES. MOLECULAR STRUCTURE OF $\operatorname{CIPt}(\mu \text {-dppm })_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ *

JUAN FORNIES, FRANCISCO MARTINEZ, RAFAEL NAVARRO, ADELAIDA REDONDO, MILAGROS TOMAS,
Departamento de Quimica Inorgánica, Instituto de Ciencia de Materiales de Aragón. Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza (Spain)
and ALAN J. WELCH
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Great Britain)
(Received June 25th, 1986)

Summary

$\mathrm{XPt}(\mu$-dppm $){ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{X}=\mathrm{Cl}\right.$ (I), Br (II), $\mathrm{C}_{6} \mathrm{~F}_{5}$ (III)) have been prepared by treating $\operatorname{PdX}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{1}-\mathrm{dppm}\right)_{2}$ with $\mathrm{Pt}(\mathrm{COD})_{2}$ or $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$. Substitution reactions of I yield neutral (SCN) or cationic (PPh_{3}, py) derivatives. The species $\mathrm{R}_{2} \mathrm{~N}^{+}, \mathrm{SO}_{2}$ or $\mathrm{RC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{COOMe})$ insert into the $\mathrm{Pd}-\mathrm{Pt}$ bond of I to give A -frame $\mathrm{Pd}^{\mathrm{II}}-\mathrm{Pt}^{\mathbf{I I}}$ complexes, but reaction with SnCl_{2} gives the SnCl_{3} derivative. The reactions of $\mathrm{X}-\mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)}\left(\mathrm{X}=\mathrm{Cl}(\mathrm{I}), \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ (III)) with isonitriles $\mathrm{RNC}(\mathrm{R}==p$ - Tol , $\mathrm{Cy}, \mathrm{t}-\mathrm{Bu}$) has been studied; the nature of the products obtained depends on the starting material, the isonitrile, and the reaction conditions.

The molecular structure of $\operatorname{ClPt}(\mu-\mathrm{dppm}){ }_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ has been established by a single crystal X-ray study.

Introduction

The ability of dppm (= 1,2-bis(diphenylphosphino)methane) to form bridged binuclear complexes has prompted interest in this and related ligands [1]. Homo-binuclear palladium(I) or platinum(I) complexes containing a $\mathrm{Pd}-\mathrm{Pd}$ or $\mathrm{Pt}-\mathrm{Pt}$ bond and two bridging dppm ligands have been much studied recently [2], but hetero-binuclear $\mathrm{Pd}^{\mathrm{I}}-\mathrm{Pt}^{\mathrm{I}}$ complexes of this type have received little attention [3].

We previously described the synthesis and reactions of some homo-binuclear perhalophenyl palladium(I) [4] or platinum(I) [5] derivatives containing dppm as

[^0]bridging ligand. In this paper we report the synthesis of the related hetero-binuclear pentafluorophenyl palladium(I$)$-platinum(I$)$ derivatives $\left[\mathrm{XPt}(\mu \text {-dppm })_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right](\mathrm{X}$ $=\mathrm{Cl}, \mathrm{Br}, \mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{SCN}, \mathrm{SnCl}_{3}$) and their reactivity in the formation of the cationic complexes $\left[\mathrm{L}^{\prime} \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}\left(\mathrm{L}^{\prime}=\mathrm{RNC}, \mathrm{PPh}_{3}, \mathrm{py}\right)$; insertions of groups such as $\mathrm{RNC}, \mathrm{SO}_{2}, \mathrm{~N}_{2} \mathrm{R}^{-}$, and $\mathrm{RC} \equiv \mathrm{CR}$ into the Pd Pt bond have also been studied.

The molecular structure of $\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{n} \mathrm{~F}_{5}\right)\right]$ has heen established by an X-ray diffraction study.

Results and discussion

Synthesis of hetero-binuclear palladium(I)-platinum(I) complexes (XPt(μ-dppm) P Pd$\left.\left(C_{6} F_{5}\right)\right]\left(X=C l, B r, S n C l_{:} C_{0} F_{5}\right)$

Reactions of complexes trans- $\mathrm{Pd}(\mathrm{X})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{1}-\mathrm{dppm}\right)_{2}\left(\mathrm{X}=\mathrm{Cl} . \mathrm{Br}, \mathrm{C}_{6} \mathrm{~F}_{5}\right)$ with $\mathrm{Pt}(\mathrm{COD})_{2}$ in oxygen-free benzene give the corresponding deep-yellow or orange hetero-binuclear metal metal bonded $\mathrm{Pd}^{1}-\mathrm{Pt}^{1}$ complexes $\left\{\mathrm{XP}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{C}_{6} \mathrm{~F}_{5}$), according to eqn. I:
trans $-\mathrm{Pd}(X)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{1}-\mathrm{dppm}\right)_{2}+\mathrm{Pt}(\mathrm{COD})_{2} \longrightarrow$

$\left(x=\mathrm{Cl}(\mathrm{I}), \mathrm{Br}(\mathrm{II}), \mathrm{C}_{6} \mathrm{~F}_{5}(\right.$ III $\left.)\right)$
Complex III can also be obtained by using $\mathrm{Pt}_{\left(\mathrm{PPh}_{3}\right)_{4}}$ as the $\mathrm{Pt}^{\prime \prime}$ starting material, according to eq. 2 :
trans-Pd $\left(\mathrm{C}_{5} \mathrm{~F}_{5}\right)_{2}\left(\eta^{1} \text {-dppm }\right)_{2}+\mathrm{Pt}(\mathrm{PPh})_{4} \longrightarrow$
(2)

The X-ray structure and ${ }^{19}$ F NMR spectrum of complex I (see below) show that the redox condensation process (eq. 1) takes place through the migration of the X group from the $\mathrm{Pd}^{\mathrm{II}}$ to Pt^{6} center.

In the ${ }^{19}$ F NMR spectrum of complex 1 , the signal, F_{0}, from the ortho-fluorines at $\delta-117.9 \mathrm{ppm}$, is basically a doublet (owing to coupling with the neighbouring meta-fluorines), with platinum satellites, the ${ }^{4} J\left(\mathrm{Pt} \mathrm{F}_{o}\right), 104 \mathrm{~Hz}$ having a value similar to that value in similar systems [5], in keeping with the presence of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group attached to the Pd^{1} center. As expected, the F_{0}, resonance in complex III appears as two signals: one corresponding to the two ortho-fluorines of the $\mathrm{C}_{6} \mathrm{~F}_{5}$
group bonded to Pt ($\delta-116.4 \mathrm{ppm}$), and the other to the two ortho-fluorines of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group bonded to $\mathrm{Pd}(\delta-109.7 \mathrm{ppm})$; both signals are basically doublets, owing to coupling to the neighbouring meta-fluorines; the first signal shows platinum satellites with ${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right) 229 \mathrm{~Hz}$ and the other shows platinum sateliites with ${ }^{4} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right) 56 \mathrm{~Hz}$.

Reaction 2 gives a better yield (77%) of complex III than does reaction $1(40 \%)$; on the other hand, samples of complex III made by reaction 1 contain small amounts of an impurity, which was identified by ${ }^{19} \mathrm{~F}$ NMR spectroscopy as the homo-binuclear complex of $\mathrm{Pd}^{1}:\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pd}(\mu \text {-dppm })_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]\left(\delta\left(\mathrm{F}_{o}\right)-111.8 \mathrm{ppm}\right)$.

Complex I reacts with KSCN in methanol to give [(NCS)Pt $(\mu-\mathrm{dppm})_{2} \mathrm{Pd}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]}$ (IV) according to eq. 3:

Treatment of complex I with an equimolar amount of SnCl_{2} leads to insertion of SnCl_{2} into the $\mathrm{Pt}-\mathrm{Cl}$ bond according to eq. 4 , as previously observed for other Pd^{I} and Pt^{1} complexes [4c,5-7]:

(v)

Analytical, conductivity and melting point data are listed in Table 1. Complexes $\mathrm{I}-\mathrm{V}$ are non-conducting in $\sim 5 \times 10^{-4} \mathrm{M}$ acetone solution (see Table 1).

The IR spectra of complexes I-V show the characteristic absorptions of the dppm ligand ($600-400 \mathrm{~cm}^{-1}$ region) along wit those of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group at ~ 1500, $\sim 950 \mathrm{~cm}^{-1}$ [8]. It is noteworthy that the band at ca. $950 \mathrm{~cm}^{-1}$ is shifted to lower wavelengths relative to its position in the palladium(II) precursors, as expected for a decrease in the formal oxidation state of the metal [4a,5]. Complex III shows two close bands ($945,940 \mathrm{~cm}^{-1}$) in this IR region owing to the presence of two different $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, one attached to Pd^{I} and the other to Pt^{1}. Complex I shows $\nu(\mathrm{Pt}-\mathrm{Cl})$ at $247 \mathrm{~m}, \mathrm{w} \mathrm{cm}{ }^{-1}$, (compare $249 \mathrm{~cm}^{-1}$ for [$\left.\mathrm{ClPt}(\mu-\mathrm{dppm}) \mathrm{PdCl}\right]$ [3]). Complex IV exhibits an absorption at $2085 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{C} \equiv \mathrm{N})$ of the SCN group [9]. Complex V shows IR bands in the $320-260$ region due to $\nu(\mathrm{Sn}-\mathrm{Cl})$ [10]. (see Table 2).

Insertion reactions

Insertions of a variety of small molecules into the $\mathrm{Pd}-\mathrm{Pt}$ bond in the complexes $\left[\mathrm{XPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]\left(\mathrm{X}=\mathrm{Cl}(\mathrm{I}), \mathrm{C}_{6} \mathrm{~F}_{5}(\mathrm{III})\right)$ give new asymmetric "A-frame"

TABLE 1
ANALYTICAL DATA. CONDUCTIVITIES AND MELTING POINTS

Complex	Analvsis (Found (calcd) (ril)			$\begin{aligned} & \text { ls }^{\prime \prime} \\ & \text { (ohm }{ }^{1} \mathrm{~cm}^{2} \\ & \text { mol } \end{aligned}$	$\begin{aligned} & \text { Mp. } \\ & \left.{ }^{\circ} \mathrm{C}\right) \end{aligned}$
	C	H	N		
$\mathrm{C1P}\left(\left(\mu-\mathrm{dpp}(1)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(1)\right.\right.$	$\begin{aligned} & 52.85 \\ & (52.85) \end{aligned}$	$\begin{array}{r} 3.46 \\ 13.48 \end{array}$	\cdots	0.80	190 d
$\mathrm{BrPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{H})$	$\begin{aligned} & 50.67 \\ & (51.067 \end{aligned}$	$\begin{aligned} & 3.35 \\ & (3.37) \end{aligned}$	-	0.67	180 d
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(1 \mathrm{H})$	$\begin{aligned} & 53.03 \\ & 133.05 \end{aligned}$	$\begin{gathered} 3.30 \\ 3.16) \end{gathered}$	\cdots	1108	$10 \times \mathrm{d}$
$(\mathrm{SCN}) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{V})$	$\begin{gathered} 52.09 \\ (52.84) \end{gathered}$	$\begin{array}{r} 3.04 \\ 3.42 \end{array}$	$\begin{aligned} & 1.14 \\ & 1.080 \end{aligned}$	ne	212 d
$\left(\mathrm{Cl}_{3} \mathrm{Sn}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{Y})$	$\begin{aligned} & 45.70 \\ & (45.09) \end{aligned}$	$\begin{gathered} 3.35 \\ (.633) \end{gathered}$...	nc	225 d
$\left.\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{N}_{2}-p-\mathrm{Tol}\right) \mathrm{PdiC}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BF}_{4}$ (VI)	$\begin{gathered} 50.55 \\ (51.17) \end{gathered}$	$\begin{aligned} & 3.53 \\ & (3.47) \end{aligned}$	$\begin{aligned} & 196 \\ & (189) \end{aligned}$	114	230 d
$\underset{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{N}_{2}-\mathrm{P}-\mathrm{Tol}\right) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{SF}_{4}}{ }$	$\begin{gathered} 5158 \\ 51.46) \end{gathered}$	$\begin{gathered} 3.28 \\ (3.00) \end{gathered}$	$\begin{gathered} 1.72 \\ (2.02) \end{gathered}$	124	267 d
$\begin{gathered} \left.\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{NO}_{4}\right) \mathrm{Pd}_{4} \mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BF}_{4} \\ (\mathrm{VIII}) \end{gathered}$	$\begin{aligned} & 49.17 \\ & (49.23) \end{aligned}$	$\begin{gathered} 303 \\ 13.20 \end{gathered}$	$\begin{gathered} 3.26 \\ (27 n) \end{gathered}$	117	230 d
$\left[(\mathrm { C } _ { 6 } \mathrm { F } _ { 5 }) \mathrm { Pt } (\mu - \mathrm { dppm }) _ { 2 } \left(\mu-\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\left(\mathrm{NO}_{2}\right){\left.\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BF}_{4}, ~}_{\text {an }}\right.\right.$	$49.2 ?$ (49.76)	$\begin{gather*} 282 \tag{1X}\\ (2.94) \end{gather*}$	$\begin{aligned} & 2.36 \\ & (2.56) \end{aligned}$	110	248 d
$\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right) \mathrm{Pd}_{\left(\mathrm{C}_{6} \mathrm{~F}_{2}\right)}(\mathrm{X})\right.$	$\begin{gathered} 51.71 \\ (5263) \end{gathered}$	$\begin{aligned} & 3.56 \\ & 13.56 \end{aligned}$	---	ne	245 d
$\left.\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{C}_{2}(\mathrm{CO})_{2} \mathrm{Me}\right)_{2}\right) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$	$\begin{gathered} 52.49 \\ (52.81) \end{gathered}$	$\begin{array}{r} 367 \\ (3.25) \end{array}$	\cdots	ne	270d
$\left[\mathrm{ClPt}\left(\mu-\mathrm{dppm}_{2}\right)_{2}\left(\mu-\mathrm{SO}_{2}\right) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{(\mathrm{CH}} \mathrm{Cl}_{2}$ (XII$)$	$\begin{aligned} & 48.10 \\ & (48.15) \end{aligned}$	$\begin{gathered} 3.28 \\ (1.26) \end{gathered}$	\ldots	$n \mathrm{l}$	$1 \times 2 \mathrm{~d}$
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2}\left(\mu-\mathrm{SO}_{2}\right) \mathrm{Pd}\left(\mathrm{C}_{n} \mathrm{~F}_{4}\right)\right](\mathrm{XIH})$	$\begin{gathered} 50.21 \\ (50.71) \end{gathered}$	$\begin{gathered} 3.35 \\ (3.02) \end{gathered}$	\cdots	ne	170 d
$\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2}(\mu-p-\operatorname{TolNC}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right](\mathrm{XIV})$	$\begin{gathered} 54.7 \% \\ (55.30) \end{gathered}$	$\begin{gathered} 3.76 \\ (3.69) \end{gathered}$	$\begin{gathered} 1.01 \\ (1.000) \end{gathered}$	9.5	160 d
$\left[\left(\mathrm{C}_{6}, \mathrm{~F}_{5}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2}\left(\mu-\rho-\mathrm{TolNC} \mathrm{Pd}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right](\mathrm{XV})\right.$	$\begin{gathered} 55.71 \\ (55.26) \end{gathered}$	$\begin{gathered} 3.50 \\ (3.79) \end{gathered}$	$\begin{gathered} 0.81 \\ (0.92) \end{gathered}$	ne	156d
$\left[(p-T o l N C) P(t \mu-\mathrm{dppm})_{2} \mathrm{Pd}^{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BP}_{4}(\mathrm{XVI})}\right.$	$\begin{array}{r} 63.26 \\ (63.15\} \end{array}$	$\begin{aligned} & 4.27 \\ & (4.27) \end{aligned}$	$\begin{gathered} 0.84 \\ (0.83) \end{gathered}$	729	132 d
$\begin{gathered} {\left[(p-\operatorname{TolNC}) \mathrm{Pt}(\mu-\mathrm{dppm})_{2}(\mu-p-\operatorname{TolNC}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}} \\ (\mathrm{XVII}) \end{gathered}$	$\begin{gathered} 64.01 \\ (6.4 .38) \end{gathered}$	$\begin{aligned} & 4.57 \\ & (4.38) \end{aligned}$	$\begin{gathered} 1.33 \\ 1.501 \end{gathered}$	2.5	140 d
$\left[(\mathrm{CyNC}) \mathrm{Pt}(\mu-\mathrm{dppm}), \mathrm{Pd}_{2}\left(\mathrm{C}_{4} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}(\mathrm{XVIII})$	$\begin{gathered} 62.14 \\ (62.73) \end{gathered}$	$\begin{aligned} & 4.62 \\ & 14.531 \end{aligned}$	$\begin{gathered} 0.91 \\ 0.84 \end{gathered}$	867	132d
$\begin{gathered} \left.[(\mathrm{CyNC}) \mathrm{Pt}(\mu-\mathrm{dppm}))_{2}(\mu-\mathrm{CyNC}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4} \\ (\mathrm{XIX}) \end{gathered}$	$\begin{aligned} & 63.50 \\ & (63.61) \end{aligned}$	$\begin{aligned} & 4.91 \\ & 4.88 \end{aligned}$	$\begin{gathered} 1.4 \% \\ 1.5 \% \end{gathered}$	4.4	1260
$\left[(t-\mathrm{BuNC}) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}(\mathrm{XX})}\right.$	$\begin{gathered} 62.61 \\ (62.26) \end{gathered}$	$\begin{aligned} & 485 \\ & 14.4 k\} \end{aligned}$	$\begin{gathered} 0.81 \\ (0.85) \end{gathered}$	870	1.36d
$\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ (XXI)	$\begin{gathered} 64.83 \\ (64.71) \end{gathered}$	$\begin{aligned} & 4.68 \\ & 4.37 \end{aligned}$	\cdots	64.0	152d
$\left[(\mathrm{py}) \mathrm{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}(\mathrm{XXII})$	$\begin{gathered} 62.92 \\ (62.41) \end{gathered}$	$\begin{gathered} 4.30 \\ (4.25) \end{gathered}$	$\begin{gathered} 1.60 \\ (0.85) \end{gathered}$	82.4	$134 d$

"nc $=$ non-conducting.
hetero-bimetallic $\mathrm{Pd}-\mathrm{Pt}$ compounds. Thus, treatment of I and III with the diazonium salts $\left(\mathrm{N}_{2} \mathrm{R}\right) \mathrm{BF}_{4}\left(\mathrm{R}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right.$, or $\left.o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ gives complexes VI-IX. MeOOCC $\equiv C C O O M e$ reacts slowly with complexes I and III to give complexes X

TABLE 2
SOME RELEVANT IR ABSORPTIONS

Complex	$\nu\left(\mathrm{cm}^{-1}\right)$			
	$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\nu(\mathrm{C} \equiv \mathrm{N})$ or $\nu(\mathrm{C}=\mathrm{N})$	600-400 region	Others
I	1493s,945s		$512 \mathrm{~s}, 498 \mathrm{~m}, 478 \mathrm{~s}, 450 \mathrm{~m} .425 \mathrm{~m}$	$247 \mathrm{~m}{ }^{\prime}$
II	1490s,945s		515s,503m,482s,425m	
III	1490s, 945 s .940 s		$518 \mathrm{~s}, 508 \mathrm{~m}, 489 \mathrm{~s}, 440 \mathrm{~m}, 425 \mathrm{~m}$	
IV	1493s,946s		517s,503m,482s,435m,425sh	2085s ${ }^{\text {b }}$
V	1495s,946s		520s, $505 \mathrm{~m}, 483 \mathrm{~s}, 445 \mathrm{~m}, 425 \mathrm{w}$	318s.298m. $292 \mathrm{~m}{ }^{\text {c }}$
VI	1502s,951s		$513 \mathrm{~s}, 479 \mathrm{~s}$	1060s, $\mathrm{br}^{\text {d }}$
VII	1500s, 954s		515s.483s	1060s, $\mathrm{br}^{\text {d }}$
VIII	1500s,958s		$514 \mathrm{~s}, 482 \mathrm{~s}$	1060s,br ${ }^{\text {d }}$, $1525 \mathrm{~m}^{\text {e }}$
IX	1500s,955s		$515 \mathrm{~s}, 485 \mathrm{~s}$	1060s,br ${ }^{d}, 1525 \mathrm{~m}{ }^{e}$
X	1500s,950s		516s,490s	1702s ${ }^{\text {f }}$
XI	1498s,948s		510s $493 \mathrm{~m}, 478 \mathrm{~m}$	1720s ${ }^{\prime}$
XII	1498s.951s		512s,496s, 470 m .423 m	$1140 \mathrm{~s} .1025 \mathrm{~m}^{\text {g }}$
XIII	1498s.951s		$511 \mathrm{~s}, 497 \mathrm{~s}, 476 \mathrm{~m}, 428 \mathrm{~m}$	1145s, $1025 \mathrm{~s}^{\text {g }}$
XIV	1492s,947s	1620(s,br)	$512 \mathrm{~s}, 507 \mathrm{~s}, 480 \mathrm{~m}, 472 \mathrm{~m}$	
XV	1490s,946s	1620s,br	510s, $500 \mathrm{~s}, 485 \mathrm{~m}, 475 \mathrm{~m}$	$1580 \mathrm{~m}, 610 \mathrm{~m}^{\text {n }}$
XVI	1495s. 948 s	2160 s	$515 \mathrm{~s} .502 \mathrm{~m}, 482 \mathrm{~s}$	$1580 \mathrm{~m}, 610 \mathrm{~m}^{\text {h }}$
XVII	1497s,948s	2170s,1620s,br	518s. $509 \mathrm{~s}, 485 \mathrm{~s}$	$1580 \mathrm{~m} .610 \mathrm{~m}^{h}$
XVIII	1490s,947s	2165 s	513s,498m,480s	$1580 \mathrm{~m}, 610 \mathrm{~m}^{h}$
XIX	1490s,945s	2167s,1620s.br	$505 \mathrm{~s}, 475 \mathrm{~m}$	$1580 \mathrm{~m} .610 \mathrm{~m}^{h}$
XX	1490s.947s	2150 s	$517 \mathrm{~s}, 500 \mathrm{~m}, 482 \mathrm{~s}$	$1580 \mathrm{~m}, 610 \mathrm{~m}^{h}$
XXI	1490s,943s		515 s .505 m .487 s	$1580 \mathrm{~m} .610 \mathrm{~m}^{h}$
XXII	1487s,942s		$512 \mathrm{~s}, 503 \mathrm{~m}, 485 \mathrm{~s}$	$1595 \mathrm{~m}^{i}, 1580 \mathrm{~m}, 610 \mathrm{~m}^{h}$

and XI, respectively. Bubbling of SO_{2} through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complexes I and III gives complexes XII and XIII, respectively (Scheme 1).
Complexes XII and XIII are stable, and no loss of SO_{2} was observed under the conditions employed.

Analytical data are listed in Table 1. In acetone solution $\left(c \sim 5 \times 10^{-4} M\right.$) [11] complexes X-XIII are non conducting whereas complexes VI-IX behave as $1: 1$ electrolytes.

The IR spectra of the complexes show the characteristic absorptions of the dppm ligand ($600-400 \mathrm{~cm}^{-1}$ region) along with those of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group (see above). The change in the formal oxidation state of the metal (Pd, Pt) was expected to increase the frequencies of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ absorption near $950 \mathrm{~cm}^{1}$ relative to those in the starting complexes I and III, and this was found to be the case for complexes VI-XIII, the increase being larger for the cationic than for the neutral complexes, as expected. Complexes VI-IX show a strong and broad absorption at $\sim 1060 \mathrm{~cm}^{-1}$ due to the counterion BF_{4}^{-}[12]. Complexes VIII-IX exhibit a band at $1525 \mathrm{~cm}^{-1}$ due to $\nu_{a s}\left(\mathrm{NO}_{2}\right)$ of the $\mathrm{N}_{2} \mathrm{R}^{+}$group [13]. Complexes X and XI show a strong absorption at $\sim 1700 \mathrm{~cm}^{-1}$ due to $\nu_{s}(\mathrm{C}=\mathrm{O})$ of the inserted group, shifted to lower energies compared with that for free acetylene ligand ($1740 \mathrm{~cm}^{-1}$). Complexes XII and XIII show absorptions at ~ 1145 and $\sim 1125 \mathrm{~cm}^{-1}$ due to the symmetric and asymmetric $\nu(\mathrm{S}-\mathrm{O})$ stretching frequencies, respectively [14].

$$
\begin{aligned}
& (a) \\
& (X=C l \\
& \left.X=C_{6} F_{5}, R=p=P-C_{3} C_{3} C_{5} H_{4}(V I I): R=0-C_{0} H_{3} C_{6} H_{4}(I X)\right)
\end{aligned}
$$

$(x=c l(x) ;$
$\left.x=C_{6} F_{5}\left(X_{1}\right)\right)$
(c)

($x=C l(x 11)$:
$\left.x=C_{6} F_{5}(X I I I)\right)$

SCHEME 1. (a) $\left[\mathrm{N}_{2} \mathrm{R}^{2}\right] \mathrm{BF}_{4}$; (b) McOOCC $\equiv \mathrm{CCOOMe}$; (c) SO_{2}

Reaction with CO

As observed for $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pd}(\mu \text {-dppm })_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \operatorname{Pt}(\mu-\mathrm{dppm})_{2} \operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ [15]. complex III does not react with CO in benzene or dichloromethane. In contrast, although complex I also does not react with CO in benzene, when CO was bubbled for 15 min through a dichloromethane solution of complex I the appearance of absorptions at 1710 s and $2055 \mathrm{w} \mathrm{cm}^{-1}$ indicated the presence of a mixture of complexes, one of which contains inserted CO (A) and the other coordinated $\mathbf{C O}$ (B) (eq. 5).

(A)
(5)

(B)

After the CO has been passed for 1 h , the IR spectrum of the dichloromethane solution shows only the absorption at $2055 \mathrm{~s} \mathrm{~cm}^{-1}$ indicating the exclusive presence of the coordinated species \mathbf{B}, suggesting that the reaction initially gives the insertion product A (eq. 5). All attempts to isolate compound B gave only the starting complex I. The addition of NaBPh_{4} to the dichloromethane solution and partial evaporation yielded a solid which showed absorptions assignable to $\nu(\mathrm{C}=\mathrm{O})(2045$ $\left.\mathrm{cm}^{-1}\right)$ and to the $\mathrm{BPh}_{4}^{-}\left(610 \mathrm{~cm}^{-1}\right)$, but the analytical results indicate that this solid is not a single species and may be a mixture of the carbonyl derivative $\left[(\mathrm{OC}) \operatorname{Pt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ and the starting material $\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$. This behaviour contrasts with that of similar pentafluorophenyl derivatives of palladium(I) or platinum(I). Bubbling of CO for 30 min through a dichloromethane solution of $\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ gives rise to an IR spectrum with a strong absorption at 2052 but none near $1700 \mathrm{~cm}^{-1}$, indicating the presence of $\left[\mathrm{COPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pt}_{\mathrm{C}}\left(\mathrm{C}_{5}\right)\right] \mathrm{Cl}$, but attempts to isolate this compound gave only starting material; however when the reaction was carried out in the presence of $\mathrm{NaBPh}_{4},\left[(\mathrm{CO}) \mathrm{Pt}(\mu \text {-dppm })_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ was obtained [5]. Bubbling of CO for 30 \min through a dichloromethane solution of $\left[\mathrm{ClPd}(\mu-\mathrm{dppm}){ }_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ gives rise to absorption at 1715 but none at $\sim 2100 \mathrm{~cm}^{-1}$, indicating the exclusive presence of $\left[\mathrm{ClPd}(\mu-\mathrm{dppm})_{2}(\mu-\mathrm{CO}) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ however, only the starting material $[\mathrm{ClPd}(\mu-$ $\left.\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ was isolated from the solution.

In view of the reactions of $\left[\mathrm{XM}(\mu-\mathrm{dppm})_{2} \mathrm{M}^{\prime} \mathrm{X}^{\prime}\right]\left(\mathrm{X}^{\prime}=\mathrm{X}=\mathrm{Cl}, \mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pd}\right.$ [16], Pt [17]; $\mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pd}$ [15], Pt [5]; $\mathrm{X}=\mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\mathrm{M}^{\prime}$ $=\mathrm{Pd}$ [15], $\mathrm{Pt}[15] ; \mathrm{X}^{\prime}=\mathrm{X}=\mathrm{Cl}, \mathrm{M}=\mathrm{Pd}, \mathrm{M}^{\prime}=\mathrm{Pt}[3] ; \mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\mathrm{Pt}$, $\mathrm{M}^{\prime}=\mathrm{Pd}$ and $\mathrm{X}=\mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\mathrm{Pt}, \mathrm{M}^{\prime}=\mathrm{Pd}$ (this work)) with CO , it can be concluded that the insertion of CO into the $\mathrm{M}-\mathrm{M}^{\prime}$ bond is hindered by the presence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, and that $\left[(\mathrm{OC}) \mathrm{M}(\mu-\mathrm{dppm}) \mathrm{M}^{\prime} \mathrm{X}\right] \mathrm{X}^{\prime}$ formation is only possible if the CO group can be coordinated to a platinum center.

Reaction with isonitriles RNC

The complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \operatorname{Pt}\left(\mu\right.\right.$-dppm) $\left.{ }_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ (III) reacts with p-TolNC in benzene to give the insertion products XV (eq. 6), but III does not react with CyNC or t -BuNC under the same conditions.

The reaction of $\left[\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ (I) with RNC is more complicated, because the isonitrile (RNC) can insert into the $\mathrm{M}-\mathrm{M}$ bond and/or can cause displacement of the terminal halide. The nature of the products obtained depends on the isonitrile and on the solvent used.

Complex I reacts in benzene with a stoicheiometric amount of p-TolNC to give the insertion product XIV. On the other hand, when CyNC is added to a solution of complex I in benzene ($1 / 1$ molar ratio) the IR spectrum of the solution shows an
absorption due to $y(\mathrm{C}=\mathrm{N})$. indicating that the inserted isonitrile compound is present. However. the solid obtained by partial evaporation and addition of n-hexane shows bands due to $\nu(C \equiv \mathrm{~N})$ and $\mu(\mathrm{C}=\mathrm{N})$ that reveal that this solid is a mixture of two isomers $\left[\mathrm{ClPt}(\mu \text {-dppm })_{2}\left(\mu-\mathrm{CNCyPd}\left(\mathrm{C}_{6} \mathrm{~F}\right)\right]\right.$ and $[\mathrm{CNCPt}(\mu-$ $\mathrm{dppm})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{HCl}$. Treatment of a solution of complex I with t-BuNC (molar ratio $1 / 1)$ gives a mixture of both coordinated and inserted derivatives and the solid isolated from the solution is a mixture of $[t-\mathrm{BuNCPr}(\mu$-dppms. PdCKF) Cl and starting material.

In order to obtain untary cationic derivatives the raction of complex 1 with RNC (molar ratio $1 / 1$) was carried out in acetonitile and in the presence of NaBPh_{4} (See Scheme 2). When an excess of $\mathrm{RNC}(\mathrm{R}=\mathrm{p}-\mathrm{TolNC}$. (NO) is used. the corresponding cationic complexes [RNCPt μ-dppm) ($\left.\mu-\mathrm{RNCPD}\left(\mathrm{C}_{\mathrm{n}} \mathrm{F}_{5}\right)\right] \mathrm{BPh}{ }_{4}$ ($\mathrm{R}=p-\mathrm{Tol}$ (XVII). Cy (XIX) containing both inseried and coordinated isontities are obtained. Reaction of 1 with an excess of $t-B u N C$ under the same conditions: gives the cationic derivative contaning only coordinated isonimile. \{t-BuNCPt μ dppm) $\left.{ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ (XX).

Addition of NaBPh_{4} to an acetonitrile solution of $\left[\mathrm{CIP}(\mu-\mathrm{d} p \mathrm{pm})_{2}(\mu-p-\right.$ TolNC)Pd($C_{6} \mathrm{~F}_{5}$)] (XIV) results. as expected, in bridging-to-terminal migration of the isonitrile and formation of the cationic derivative fo Tolnciptepdppm) $\left.{ }_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ (XV1). The reactions of RNC with I are summarized in Scheme 2.

The tendency of RNC to give insertion products decreases in the sequence $p-T o l N C>C y N C>i-B u N C$, in agreement with our previous observations on palladium(1) or platinum(1) derivatives $[4 a, 4 c, 5]$ and in keeping whth the insertion of isocyanides into $\mathrm{M}-\mathrm{C}$ bends [18.19].

SCHEME 2. (a) RNC in acctontrile: (b) RNC in bemzenc: (e) RNC in an :aco

The IR spectra of the isocyanide complexes were very valuable for showing the presence of coordinated $\mathrm{C} \equiv \mathrm{N}$, with $\nu 2100-2200 \mathrm{~cm}^{-1}$, and/or inserted $\mathrm{C}=\mathrm{N}$, with $\nu 1500-1650 \mathrm{~cm}^{-1}$ (see Table 2). It is noteworthy that complexes XIV, XV, XVII and XIX with inserted isonitriles have their $\mathrm{C}_{6} \mathrm{~F}_{5}$ band ($\sim 950 \mathrm{~cm}{ }^{1}$) at wavelengths very similar to that observed for complexes with $\mathrm{Pd}-\mathrm{Pt}$ bonds ($\mathrm{I}-\mathrm{V}$), indicating that the insertion of the isonitrile into the $\mathrm{Pd}^{\mathrm{I}}-\mathrm{Pt}^{\mathrm{I}}$ bond does not appreciably change the electron density around the metal center [4a,20] (see Table 2). The IR spectra of complexes XVII-XX show absorptions at 1580 and $610 \mathrm{~cm}^{-1}$ due to the anion $\mathrm{BPh}_{4}{ }^{-}$. Bands assigned to the dppm ligand in the $600-400 \mathrm{~cm}^{-1}$ region are listed in Table 2.

Table 1 lists the conductivities of acetone solutions ($c,-5 \times 10^{-4} \mathrm{M}$) of these complexes, which are as expected. The low but definite conductivity of the solution of complex XIV arises from the elimination-coordination (eq. 7) equilibrium in this solvent:
$\operatorname{ClPt}(\mu-\mathrm{dppm})_{2}(\mu-p-\mathrm{TolNC}) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \rightleftharpoons$

$$
\begin{equation*}
\left[(p-\operatorname{TolNC}) \operatorname{Pt}(\mu-\mathrm{dppm})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{Cl} \tag{7}
\end{equation*}
$$

The existence of this equilibrium is confirmed by IR spectroscopy, the IR spectrum of the acetone solution showing an absorption at $2140 \mathrm{~cm}^{-1}$ corresponding to coordinated isonitrile [4c].

TABLE 3
CRYSTAL DATA FOR $\operatorname{ClPt}(\mu \text {-dppm })_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$

Formula	$\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{ClF}_{5} \mathrm{P}_{4} \mathrm{PdPt}$
M	1272.8
Crystal system	Monoclinic
Space group	$P 2_{1} / c$
$a(\AA)$	$16.280(4)$
$b(\AA)$	$12.959(4)$
$c(\AA)$	$25.033(10)$
$\beta\left({ }^{\circ}\right)$	$91.42(3)$
$V\left(\AA^{3}\right)$	5279.7
Diffractometer	Enraf-Nonius CAD4
$T(\mathbf{K})$	293 ± 1
Radiation	Mo- K_{α}
$\lambda(\AA)$	0.71069
$\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	30.5. Empirical absorption correction was
	applied (28)
θ-range $\left({ }^{\circ}\right)$	$1-22^{\circ}$
Mode	$\theta-2 \theta$ scans
Data measured	6438
Data used	$4436(F>6 \sigma(F))$
Solution	Patterson; ΔF syntheses
Refinement	Block-diagonal least-squares
Model	C and H isotropic, all other atoms anisotropic.
	Rigid planar hexagons. H atoms in calculated
	positions. Group U 's for H atoms (0.08).
Weighting scheme	$w^{-1}=\left\{\sigma^{2}(F)+0.0006 F^{2}\right\}$
R_{w}	0.0553
R	0.0587
Variables	237

TABLE 4
FRACTIONAL COORDINATES IN CIPt $\left(\mu-\mathrm{dppm}_{\mathrm{p}}\right)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$

Alom	x	y	z
P_{t}	$0.22581(4)$	(0.26558(4)	0.3519623
Pd	$0.23783(6)$	$0.40994(7)$	0.4263093)
(l)	$0.2172(3)$	$0.1297(4)$	0.28430 tc
$\mathrm{P}(1)$	$0.09561(23)$	$0.22884(27)$	0:37074:
$P(2)$	$0.35724(22)$	$0.29894(27)$	0.32050413
$\mathrm{P}(3)$	031349 (23)	$0.5034926)$	$0.36864(14)$
$\mathrm{P}(4)$	0.16300622	$0.30326820)$	(6, 724403
F(1)	$0.1463(8)$	$0.6204{ }^{9}$)	0.45816:
F(2)	$0.1594(13)$	$0.7558(9)$	0.53519
F(3)	$0.2836(14)$	$0.72760(5)$	Q6iomas
F(4)	0.3843 (12)	$0.5559(19)$	aetbetol
$1(5)$	$0.3660(7)$	$0.4286010)$	12.59594
(1)	$0.4016(8)$	0.4243 (10)	0.52216
C(2)	$0.0650(8)$	0.2775110	9.44175
C(3)	$0.2540,9$	0.517211)	0.48736
(14)	$0.2063(12)$	$0.6004(14)$	0.4929
C(5)	$0.2120(14)$	(0.677117)	10.53559
(16)	$0.2698(16)$	0. $6534(20)$	1.5694(10)
C(7)	$0.3210(17)$	0.5783207	1.5700419
(i8)	$0.311912)$	9.510114)	0.5243%
$\mathrm{Cl} 10)$	0.135559	$0.0209(8)$	0.301914
C(11)	0.117665	$0.0832(8)$	() 39484
C(12)	$0.0364(5)$	0.1174(8)	$0.3068(t)$
C(13)	-002095	--0.0475 ${ }^{(8)}$	038574
C(14)	$0.0091(4)$	$0.0565(8)$	0.3584
(19)	$0.0721(5)$	$000007(8)$	O.3neyt 4
$\mathrm{H}(10)$	$0.1983(5)$	0.0474 (8)	0.3943 (+1
H(1)	$0.1667(5)$	$0.1373(8)$	0. 40×4 (4i
H(12)	0.022655	- $0.1980(8)$	9.4094,
[113)	$0.0898(5)$	$0.0740(8)$	938334
H(14)	-0.0581(5)	$0.1106(8)$	(1)36934)
C(16)	0.035097	0.2743 (4)	4,27636
C(17)	-0.0215 ${ }^{(0.035}$	$0.3104(9)$	4.23825
C(18)	$0.0960(6)$	$0.3517(9)$	$0.2544(4)$
C(19)	-0.1134(6)	$0.3569(9)$	$0.30 \mathrm{cc} \mathrm{C}^{5}$
(20)	-0.0563(6)	$0.320819)$	0.346%
C(15)	0.0182169	0.279599	0.30544)
H(16)	0.0933 (6)	$0.2423(9)$	026376
H(17)	0.008077	$0.3063(9)$	01962(3)
H(18)	$0.1402(6)$	$0.3798(9)$	0.29505
H(19)	-0.171007)	$0.3889(9)$	0.220 ${ }^{\text {a }}$
H(20)	$0.0697(6)$	$0.3249(9)$	9,388605
C(22)	0.447615	$02682(8)$	$0.2360(+)$
C(23)	0.4575, 5	(1) $2662(8)$	(10.1) $14(4)$
C(24)	$0.3432(5)$	0) 297048	0.1420 ${ }^{1}$
C(25)	$0.3189(5)$	$0.3297(8)$	().1631(4)
(26)	0.309045	$0.3317(x)$	122304
C(21)	0.373365	$0.3009(8)$	12.2575(4)
H(22)	0.4973 (5)	0.2444 (S)	(1)2031(+)
H(23)	$0.5150(5)$	$0.2409(x)$	[10.1653(4)
H(24)	$0.4009(5)$	$02954(8)$	0) 1044(4)
H(25)	$0.2692(5)$	$0.3535(8)$	$01415(4)$
H(26)	$0.2515(5)$	0.3570 (8)	(1)2344(4)

TABLE 4 (continued)

Atom	x	y	z
C(28)	0.4190(7)	$0.1034(9)$	0.3354(4)
C(29)	$0.4726(7)$	$0.0254(10)$	0.3525(4)
C(30)	$0.5364(7)$	0.0478(9)	0.3889(4)
C(31)	$0.5465(7)$	$0.1481(9)$	0.4082(4)
C(32)	0.4929(7)	$0.2260(9)$	$0.3911(4)$
C(27)	$0.4291(7)$	$0.2037(9)$	$0.3547(4)$
H(28)	$0.3696(7)$	$0.0860(9)$	0.3072(4)
H(29)	0.4647 (7)	-0.0522(9)	$0.3376(5)$
H(30)	0.5779(7)	-0.0125(9)	0.4021(5)
H(31)	0.5959(7)	0.1654(9)	0.4364(4)
H(31)	0.5008(7)	$0.3037(9)$	0.4060(5)
C(34)	0.3206 (5)	$0.7167(8)$	0.3845(4)
C(35)	0.3519(6)	0.8069(8)	$0.4081(4)$
$\mathrm{C}(36)$	0.4213 (6)	0.8015 (8)	0.4418(4)
C(37)	$0.4596(6)$	0.7068(8)	0.4518(4)
C(38)	$0.4283(6)$	$06172(8)$	0.4281(4)
C(33)	0.3588(6)	0.6220 (8)	0.3945(4)
H(34)	0.2668 (6)	0.7205(8)	0.3584(4)
H(35)	0.3223(6)	0.8796(8)	0.4004(4)
H(36)	0.4455(6)	0.8709(8)	$0.4601(4)$
H(37)	0.5134(6)	$0.7030(8)$	0.4778(4)
H(38)	0.4579(6)	0.5439(8)	0.4359(4)
$\mathrm{C}(40)$	0.3181(5)	0.5875(8)	$0.2678(5)$
$\mathrm{C}(41)$	0.2851 (5)	$0.6157(8)$	0.2179(4)
$\mathrm{C}(42)$	$0.2020(5)$	0.5988(8)	0.2060(4)
$\mathrm{C}(43)$	$0.1519(5)$	0.5538(8)	$0.2439(5)$
$\mathrm{C}(44)$	0.1849(5)	0.5256 (8)	0.2938(4)
C(39)	0.2680 (5)	0.5424(8)	$0.3057(4)$
H(40)	0.3824 (5)	$0.6005(8)$	0.2770(5)
H(41)	0.3239(5)	0.6505(8)	0.1885 (4)
H(42)	$0.1765(5)$	$0.6206(8)$	0.1674(4)
H(43)	$0.0876(5)$	$0.5407(8)$	0.2347 (4)
H(44)	0.1462(5)	$0.4907(8)$	0.3232(4)
$\mathrm{C}(46)$	0.0522(5)	0.3858(8)	0.5511(3)
$\mathrm{C}(47)$	$0.0285(5)$	$0.4124(8)$	0.6025(4)
$\mathrm{C}(48)$	0.0830(5)	$0.3985(8)$	0.6458(3)
C(49)	0.1611 (5)	0.3580 (8)	0.6377(4)
C(50)	$0.1847(6)$	0.3314 (8)	$0.5864(4)$
$\mathrm{C}(45)$	0.1303(5)	0.3453(8)	0.5430(4)

Synthesis of the cationic complexes $\left[L P t(\mu-d p p m)_{2} \operatorname{Pd}\left(C_{6} F_{5}\right)\right] B P h_{4}\left(L=P P h_{3}(X X I)\right.$, py (XXII))

Addition of neutral ligands L to complex I suspended in methanol induces complete dissolution and subsequent addition of NaBPh_{4} permits the isolation of $\left[\operatorname{LPt}(\mu \text {-dppm })_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] \mathrm{BPh}_{4}$ (see eq. 8).

Complexes XXI and XXII behaves as $1 / 1$ electrolytes in $5 \times 10^{4} 4 \mathrm{M}$ acetone solution.

Their IR spectra show the presence of $\mathrm{BPh}_{4}, \mathrm{C}_{6} \mathrm{~F}_{5}$ and dppm. Complex XXII shows a band at 1595 due to the py ligand [21], (see Table 2).

Structure of $C l P t(\mu-d p p m)_{2} P d\left(C_{5}, F_{5}\right)$
The structure of complex I was determined by single crystal X-ray diffraction. General crystallographic information is presented in Table 3. Positional parameters and selected bond distances and angles are given in Tables 4 and 5 . respectively, and lists of hydrogen atom coordinates, thermal parameters. and structure factors are available from the authors. Figure 1 shows the molecular structure of the complex which is similar to other analogous Pd^{1} or Pt^{1} derivatives [6.22.23] and constists of $\mathrm{Pt}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{C}_{6} \mathrm{~F}_{5}$ fragments linked by a Pd Pt bond and wo bridging bisfdiphenylphosphino)methane ligands. The distance Pd Pt is $2.643(1) \mathrm{A}$. in the same range or somewhat shorter than the distances found in analogous $\mathrm{Pd}^{1}(2.644(2) \mathrm{A}$ in $\mathrm{ClPd}(\mu-\mathrm{dppm})_{2} \mathrm{PdSnCl}_{3}[6] .2 .699 \AA$ in $\mathrm{Br} \mathrm{Pd}(\mu-\mathrm{dppm})_{2} \mathrm{PdBr}[22]$ or $\mathrm{Pt}{ }^{\prime}$ (2.651(1) A in $\left.\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{PtCl}[23]\right)$, species. The coordination geometries about the Pd and Pt centers are approximately planar (the dihedral angles between the planes $P d-P t-P(1), P(2)-P t-C l a n d P d-P t-P(4), P d-P(3)-C(3)$ are 178.23 and 175.85°.

TABLE 5
SELECTED MOLECULAR GEOMETRY PARAMETERS FOR (IPt μ-dppm) Pd(C, I_{2}

Bond lenghts (A)	
$\mathrm{P}^{\mathrm{t}} \mathrm{-Pd}$	2643 (1)
$\mathrm{Pt}-\mathrm{Cl}$	2.444 (4)
Pd -C(3)	$2.076{ }^{14} 4$
$\mathrm{Pt}-\mathrm{P}(1)$	$2.26 .2(4)$
$\mathrm{Pt}-\mathrm{P}(2)$	2.26741
$\mathrm{Pd} \mathrm{P}(3)$	2.2714
$\mathrm{P}(1-\mathrm{P}(4)$	$226043)$
C(1) P(2)	$1.859(13)$
C(1) $\mathrm{P}^{(3)}$	182943)
($(2) \mathrm{P}_{(1)}$	1.862(12)
C(2)-P(4)	1.84113
Bendid angles (${ }^{\circ}$)	
$\mathrm{Pt}_{1} \mathrm{Pd} \times \mathrm{P}_{(4)}$	$86.2(1)$
$P t, P d-P(3)$	87.8 (1)
$P_{i}-P d-C(3)$	$175.9(4)$
$P(3)-P d-P(4)$	$174.0(1)$
$P(3)-P d-C(3)$	42.8(4)
$\mathrm{P}(4)-\mathrm{Pd}-\mathrm{Cl} 3)$	$43.1(4)$
$\mathrm{Pd}-\mathrm{Pt}-\mathrm{P}(1)$	$41.3(1)$
$\mathrm{Pd} \mathrm{Pt}-\mathrm{P}(2)$	$80.211)$
$\mathrm{Pd}-\mathrm{Pt}-\mathrm{Cl}$	178.7(1)
$P(1) P(-P(2)$	178.71)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Cl}$	$80.311)$
$P(2)-\mathrm{P}_{1}-\mathrm{Cl}$	90.211
$P(1)-C(2)-P(4)$	104.46)
$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{P}(3)$	$106.1(6)$

Fig. 1. Perspective views of $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{Pd}_{\mathrm{d}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$: (a) Complete molecule. (b) Central section with Ph rings removed, showing numbering of key atoms.
respectively). The $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Pd}-\mathrm{C}(3)$ chain is almost linear, and the angles $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Pd}$ or $\mathrm{Pt}-\mathrm{Pd}-\mathrm{C}(3)$ are $178.7(1)$ and $175.9(4)^{\circ}$, respectively.

The angles between mutually cis-palladium or platinum-ligand bonds are in the range $86.2-93.1^{\circ}$ and the corresponding angles between mutually trans-palladium or platinum-ligands bonds are in the range $174.0-178.7^{\circ}$ (see Table 5). The $\mathrm{Pt}-\mathrm{Cl}$ distance (2.444(4) \AA) is longer than that for other binuclear Pt^{I} derivatives (2.401(5) and 2.408(5) \AA in $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{PtCl}$ [23], 2.382(10) and $2.426(9) \AA$ in $\left[\mathrm{PtCOCl}_{2}\right]_{2}{ }^{2-}$ [24], suggesting a rather high trans-influence of the $\mathrm{Pd}-\mathrm{Pt}$ bond. In accord with such a trans-influence the $\mathrm{Pd}-\mathrm{C}(3)$ distance is (2.076(14) $\hat{A})$ longer than that found for other pentafluorophenyl palladium(II) derivatives (2.029(4) and $2.012(6) \AA$ in cis $-\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{CPCy}_{3}\right)$ [25]). The distances $\mathrm{Pd}-\mathrm{P}$ or $\mathrm{Pt}-\mathrm{P}$ are in the same range as those in other similar $\mathrm{Pd}^{\mathrm{I}}[5,6,22]$ or Pt^{I} [23] derivatives.

The coordination planes around the palladium and platinum atoms are twisted about the $\mathrm{Pt}-\mathrm{Pd}$ bond and the dihedral angle between them is 37.57°, similar to those in $\operatorname{BrPd}(\mu-\mathrm{dppm})_{2} \operatorname{PdBr}\left(39^{\circ}\right)$ [22] and $\mathrm{ClPt}(\mu-\mathrm{dppm})_{2} \mathrm{PtCl}\left(38.6^{\circ}\right)$ [23].

Experimental

C, H and N analyses were carried out on a Perkin-Elmer 240 microanalyzer. Melting points were determined with a Buchi apparatus and are uncorrected.

Conductivities were measured in approx. $5 \times 10^{-4} M$ solutions with a Philips PW $9501 / 01$ conductimeter. The IR spectra were recorded (in the $4000-200 \mathrm{~cm}$! range) on a Perkin-Elmer spectrophotometer using Nujol mulls between polyethylene sheets. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with CDCl_{3} solutions on a Varian $\mathrm{XL}-200 ; \delta$ is relative to CFCl_{3}.

The complexes $\mathrm{Pt}(\mathrm{COD})_{2}$ [26], $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ [27]. $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{dppm})_{2}[4 \mathrm{a}] \mathrm{PdCl}\left(\mathrm{C}_{6}-\right.$ $\left.\mathrm{F}_{5}\right)(\mathrm{dppm})_{2}[4 \mathrm{a}], \mathrm{PdBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})_{2}[4 \mathrm{a}]$. were prepared as described elsewhere.
$X P t(\mu-d p p m)_{2} P d\left(C_{6} F_{5}\right)\left(X=C l(I), B r(I I), C_{6} F_{5}(I I I)\right)$ from $\operatorname{Pt}(C O D)$,
To a solution of $0.137 \mathrm{~g}(0.33 \mathrm{mmol})$ of $\mathrm{Pt}(\mathrm{COD})_{2}$ in 20 ml of benzene (deoxygenated) under nitrogen was added 0.33 mmol of $\mathrm{PdX}\left(\mathrm{C}_{0} \mathrm{~F}_{5}\right)(\mathrm{dppm})_{2}(\mathrm{X}=\mathrm{Cl}$. $\mathrm{Br}, \mathrm{C}_{6} \mathrm{~F}_{5}$). The initially colourless solution turned orange, and was stirred for 1 h at room temperature, then concentrated to -5 ml . Addition of Et, O or n -hexane then gave the product as a deep yellow (I, III) or orange (II) precipitate. Yields. I: 80°. 11: 65%. III: 40%.
$\left(C_{6} F_{5}\right) P t(\mu-d p p m)_{2} P d\left(C_{6} F_{5}\right)$ (III) from $P t\left(P P h_{3}\right)_{4}$
To a solution of $0.300 \mathrm{~g}(0.24 \mathrm{mmol})$ of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ in 30 ml of deoxygenated benzene under nitrogen, was added $0.291 \mathrm{~g}(0.24 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{dppm})_{2}$. The mixture was refluxed for 30 min then evaporated almost to dryness. Addition of 10 ml of $\mathrm{Et}_{2} \mathrm{O}$ produced a deep yellow precipitate (III). Yield 77 f .
(SCN)Pt(μ-dppm) $)_{2} P d\left(\mathrm{C}_{6} F_{5}\right)$ (IV)
To a suspension of $0.100 \mathrm{~g}(0.07 \mathrm{mmol})$ of I in 20 ml of methanol, was added $0.007 \mathrm{~g}(0.07 \mathrm{mmol})$ of KSCN. The mixture was stirred for 5 h at room temperature then evaporated to $=10 \mathrm{ml}$, and the resulting solid was filtered off. washed with $4 \times 10 \mathrm{ml}$ of water, and dried under vacuum. Yield 70%.

$\left(\mathrm{Cl}_{3} \mathrm{Sn}\right) \mathrm{Pt}(\mu-d p p m)_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ (V)

To a solution of $0.1 \mathrm{~g}(0.07 \mathrm{mmol})$ of I in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.014 g $(0.07 \mathrm{mmol})$ of SnCl_{2}. The yellow solution turned orange. The mixture was stirred for 90 min at room temperature, then evaporated to -10 ml and $\mathrm{i}-\mathrm{PrOH} /$ hexane $(1 / 1,30 \mathrm{ml})$ was added to precipitate complex V in 65% yield.
$\left[X P t(\mu-d p p m)_{2}\left(\mu-N_{2} R\right) P d\left(C_{1} F_{5}\right) / B F_{4} ; \quad\left(X=C l, R=p-\mathrm{CH}_{3} \mathrm{C}_{2} H_{4}(V /) ; X=C_{5} F_{5}, R=\right.\right.$ $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(V I I) ; X=\mathrm{Cl}, \mathrm{R}=0-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(V I H) ; X=C_{6} F_{5}, R=0-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(I X)$,

To a cooled $\left(-25^{\circ} \mathrm{C}\right)$ solution of $1(0.11 \mathrm{~g}, 0.07 \mathrm{mmol})$ in acetone $(40 \mathrm{ml})$ was added $0.016 \mathrm{~g}(0.07 \mathrm{mmol})$ of ($\left.p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right) \mathrm{BF}_{4}$. The solution was stirred at $-25^{\circ} \mathrm{C}$ for 15 min and then allowed to reach room temperature during ca. 30 min . Evaporation to ca. 5 ml and addition of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ afforded VI, which was recrystallized from acetone/ $\mathrm{Et}_{2} \mathrm{O}$. Yield: 70%.

Similar procedures gave: VII: 60% yield; VIII: 66% vield; IX: 61% yield.
$\left[X P t(\mu-d p p m)_{2}\left(\mu-C_{2}\left(C O_{2} M e\right)_{2}\right) P t\left(C_{6} F_{5}\right)\right] ;\left(X=C l(X) ; X=C_{0} F_{5}(X I)\right)$
To a solution of $\mathrm{I}(0.100 \mathrm{~g} .0 .078 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ were added $9.6 \mu \mathrm{I}$ (0.078 mmol) of $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$. The mixture. protected from the light, was stirred at room temperature for 6 d , then evaporated to ca. 3 ml . Addition of $\mathrm{Et}_{2} \mathrm{O}$ $(40 \mathrm{ml})$ afforded X in 45% yield. XI was obtained similarly in 50% yield.
$\left[X P t(\mu-d p p m)_{2}\left(\mu-\mathrm{SO}_{2}\right) \operatorname{Pt}\left(C_{6} F_{5}\right)\right]\left(X=C l(X I I) ; X=C_{6} F_{5}(X I I I)\right)$
SO_{2} was bubbled for 1 h at room temperature through a solution of $\mathrm{I}(0.142 \mathrm{~g}$, $0.100 \mathrm{mmol})$ in 4 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The initial yellow solution turned orange. $\mathrm{Et}_{2} \mathrm{O}(50$ ml) was added to precipitate XII, which separated with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of crystallization. Yield: 90%.

A similar procedure gave complex XIII; 92\% yield.
$X P t(\mu-d p p m)_{2}(\mu-p-T o l N C) P d\left(C_{6} F_{5}\right)\left(X=C l(X I V) ; X=C_{6} F_{5}(X V)\right)$
To a solution of $0.178 \mathrm{~g}(0.138 \mathrm{mmol})$ of I in 40 ml of benzene was added p-TolNC ($17.4 \mu 1,0.138 \mathrm{mmol})$. After 2 h stirring at room temperature the solution was concentrated to ca. 5 ml and hexane (ca. 30 ml) was added to precipitate XIV, which recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane. Yield 69%.

XV was obtained similarly from III in 81% yield.
$\left[(\right.$ RNC $\left.) \operatorname{Pt}(\mu-d p p m)_{2} P d\left(C_{6} F_{5}\right)\right] B P h_{4}(R=p-T o l N C(X V I) ; R=C y C N(X V I I I))$
(a) From I. To a suspension of $0.100 \mathrm{~g}(0.07 \mathrm{mmol})$ of I in 10 ml of NCMe was added p-TolNC ($9.8 \mu 1,0.07 \mathrm{mmol}$). The suspension was stirred for 5 min at room temperature, then $0.026 \mathrm{~g}(0.07 \mathrm{mmol})$ of NaBPh_{4} was added to the resulting yellow-orange solution and the mixture was stirred for 1 h . The solution was filtered and evaporated, and the residual oil was stirred with $i-\mathrm{PrOH} / \mathrm{n}$-hexane to give crystalline XVI, which was dried at $80^{\circ} \mathrm{C}$. Yield 65%.

XVIII was obtained similarly; 62% yield.
(b) Synthesis of XVI from XIV. A solution of $0.070 \mathrm{~g}(0.01 \mathrm{mmol})$ of XIV in 15 ml of NCMe was stirred 1 h at room temperature, then a solution of $0.017 \mathrm{~g}(0.05$ mmol) of NaBPh_{4} in 20 ml of $\mathrm{i}-\mathrm{PrOH}$ was added. Evaporation to dryness left a pale yellow residue, which was washed with $2 \times 10 \mathrm{ml}$ of water and dried. Yield 80%.
$\left[(R N C) P t(\mu-d p p m)_{2}(\mu-R N C) P d\left(C_{6} F_{5}\right)\right] B P h_{4} \quad(R=p-T o l N C \quad(X V I I) ; \quad R=C y N C$ ($X I X$)

To a suspension of $0.100 \mathrm{~g}(0.07 \mathrm{mmol})$ of I in 10 ml of NCMe , was added p-TolNC ($21 \mu 1,0.16 \mathrm{mmol}$). The suspension was stirred for 5 min at room temperature, then $0.026 \mathrm{~g}(0.07 \mathrm{mmol})$ of NaBPh_{4} was added and the mixture was stirred for 1 h then evaporated. The residual oil was stirred with $\mathrm{i}-\mathrm{PrOH} /$ hexane to give crystalline XVII. Yield 70\%.

XIX was obtained similarly. In this case, the product was recrystallized from $\mathrm{NCMe} / \mathrm{i}-\mathrm{PrOH}$ in the presence of $\sim 5 \mu 1$ of CyNC . Yield 63%.
$\left[(t-B u N C) P t(\mu-d p p m)_{2} P d\left(C_{6} F_{5}\right)\right] B P h_{4}(X X)$
Complex XX is obtained by the method described for the preparation of complex XVIII using a $2.5 / 1$ molar ratio of t -BuNC to I . Yield 60%.
$\left[(L) P t(\mu-d p p m)_{2} P d\left(C_{6} F_{5}\right)\right] B P h_{4}\left(L=P P h_{3}(X X I) ; L=p y(X X I I)\right)$
$\mathrm{PPh}_{3}(0.041 \mathrm{~g}, 0.155 \mathrm{mmol})$ was added to a suspension of $\mathrm{I}(0.100 \mathrm{~g}, 0.078 \mathrm{mmol})$ in 15 ml of MeOH . Stirring at room temperature for 10 min resulted in complete dissolution. After addition of $\mathrm{NaBPh}_{4}(0.030 \mathrm{~g}, 0.087 \mathrm{mmol})$ the stirring was continued for 15 min . The solution was evaporated to dryness and the residue recrystallized from acetone/i-PrOH. Yield 80%.

A similar procedure gave XXII; Yield 75%.

Acknowledgement

We thank the CAICYT (Spain) for financial support and the Scientific Office of NATO for a travel grant.

References

I R.J Puddephatt. Chem. Soc. Rev., 12 (1983) 94
2 (a) Ref. 1 and references therein; (b) R.J. Puddephatt. K.A. Azam. R Il. Hib, MP Brown. (D) Nelson. R.P. Moulding. K.R. Seddon and MC. Grosel, J. Am. Chem. So. 105 (1483) 5642 : $10 / \mathrm{MP}$ Brown. A. Yavari, L. Manolowic-Muir and K.W. Mum, J. Organome (hem. 266 (1983) (19 (d) R.H. Hill and R.J. Puddephati. Organometailics, $2(1983) 142$, (c) R.II. Will and R I Puddephan. I

 Dalton Trans.. (1985) 1015
3 PG. Pringle and BL Shaw, I Chem. Soc. Dalton Trans, (19xi) $\times 89$.
4 (a) R. Usón, J. Forniés, P. Espinet, F. Martínez. C. Fortuño and B Memon. I. Orgammet (hem. 256 (1983) 365 ; (b) R. Uson, Y. Fornics, P. Espinct and C. Fortuño. Inorg Chm, Abtu si 1984 207: (c) P. Espinet. J. Fornés (. Fortuno. (i. Hidalgo. F. Martnce M Tomis and Al Weleh, I Organomet. Chem.. in press.
5 R. Usón, J Formiés, P. Espinet and C. Fortuño. I. Chem. Soc., Daton Trans.. an prow,
6 M.M. Olmstead, I S Benner, H. Hope and A.L. Baleh, Inorg Chim, Acza, 3.2 (1970) 193
7 M.G. Grossel. R.P. Moulding and K R. Seddon, Inorg Chim. Acta. 64 (10x? 1275
8 E. Maslowsky Jr.. Vibrational Specta of Organometaltic (mapound. Whay Aest York 1977.p. 47 and refercnees given therem.
 ence. New York. 1970 . p. 187.
10 D.F. Schriver and M.P. Johnson, Inorg (hem. (1967) 1265
11 WJ. Geary, Coord. Chem. Rev, 81 (1971) 7.
12 N.N. Greenwood, J. Chem. Soc (1959) 3811.
13 M. Francel. J. Am. Chem. Soc. $74(1952) 1265$
14 D.M.P. Mingos, Trans. Met. Chem., ; (1978) 1
15 R. Usón, et al.. unpublished result,
16 (a) L.S. Benner and A L. Bath. A. Am. Chem. Soc. 1001 (1978) 6099. (b) M M. Otmstead. H. Ifope. L. S. Benner and A.L. Balch. J. Am (hem Soc. 99 (1977) 5502

17 (a) Lj. Manojlovte-Muir, K. W. Nuir and T. Solomun, J. Organomet Chem. 179 (1970) 479 ; (b) MP. Brown, AN Keith, Lj Manolows Muir. K W. Muir. R I Puddophat: and ki R Sedam, Inorg Chim. Acta, 34 (1979) 1223
18 S. Otsuka. A. Nakamura and T. Yoshida. J. Ame Chem. Soc, 91 (1969)719\%.
19 R. Uson, J. Fornies, P. Espinet and E. Lalinde. J Organomet. Chem, $2+4083$ (37.
20 P. Brant, L.S Benner and A.L. Balch, Inorg. Chem. (1979) 3422
21 J.R. During. B.R Mitchell. DH. Sink. IN Whllis Ir and As Whon, Gpetrochm Acta. A. $2:$ (1967) 1121.

22 (a) R.G. Holloway. B.R. Renfold. R Colton and J. MeCormick, J. Chem. Soc., Chem. Commun (1976) 485: (b) R. Colton, M. Mc Mormick and D. Pannan. Aws) (heme il (1978) 1425

23 Lj. Manojlović-Muir, K.W. Muir and T. Solomm, Acta Crest, B35 (1979) 1237
24 A. Modinos and P. Woodward, 3 , Chom. Soc, Daton Trans. (1975)151t.
 Trans., (1986) 947.
26 J. Spencer. Inorg. Synth., $19(1979) 213$
27 L. Malatesta and C. Catello. J. Chem Soc., (1958) 2323
28 N. Walker and D. Stuart. Acta Crust. A30 (1983) 158.

[^0]: * Dedicated to Prof. R. Usón on the occasion of his 60 th birthday.

