Journal of Organometallic Chemistry, 316 (1986) 351-366 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS AND REACTIVITY OF MIXED PENTAFLUOROPHENYLPALLADIUM(I)-PLATINUM(I) DERIVATIVES. MOLECULAR STRUCTURE OF CIPt(μ-dppm)₂Pd(C₆F₅) *

JUAN FORNIES, FRANCISCO MARTINEZ, RAFAEL NAVARRO, ADELAIDA REDONDO, MILAGROS TOMAS,

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza (Spain)

and ALAN J. WELCH

Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Great Britain) (Received June 25th, 1986)

Summary

 $XPt(\mu-dppm)_2Pd(C_6F_5)$ (X = Cl (I), Br (II), C_6F_5 (III)) have been prepared by treating $PdX(C_6F_5)(\eta^1-dppm)_2$ with $Pt(COD)_2$ or $Pt(PPh_3)_4$. Substitution reactions of I yield neutral (SCN) or cationic (PPh_3, py) derivatives. The species R_2N^+ , SO₂ or RC=CR (R = COOMe) insert into the Pd-Pt bond of I to give A-frame Pd^{II}-Pt^{II} complexes, but reaction with SnCl₂ gives the SnCl₃⁻ derivative. The reactions of X-Pt(μ -dppm)₂Pd(C₆F₅) (X = Cl (I), C₆F₅ (III)) with isonitriles RNC (R = *p*-Tol, Cy, t-Bu) has been studied; the nature of the products obtained depends on the starting material, the isonitrile, and the reaction conditions.

The molecular structure of $ClPt(\mu-dppm)_2Pd(C_6F_5)$ has been established by a single crystal X-ray study.

Introduction

The ability of dppm (=1,2-bis(diphenylphosphino)methane) to form bridged binuclear complexes has prompted interest in this and related ligands [1]. Homo-binuclear palladium(I) or platinum(I) complexes containing a Pd-Pd or Pt-Pt bond and two bridging dppm ligands have been much studied recently [2], but hetero-binuclear Pd^I-Pt^I complexes of this type have received little attention [3].

We previously described the synthesis and reactions of some homo-binuclear perhalophenyl palladium(I) [4] or platinum(I) [5] derivatives containing dppm as

^{*} Dedicated to Prof. R. Usón on the occasion of his 60th birthday.

bridging ligand. In this paper we report the synthesis of the related hetero-binuclear pentafluorophenyl palladium(I)-platinum(I) derivatives $[XPt(\mu-dppm)_2Pd(C_6F_5)]$ (X = Cl, Br. C₆F₅, SCN, SnCl₃) and their reactivity in the formation of the cationic complexes $[L'Pt(\mu-dppm)_2Pd(C_6F_5)]^+$ (L' = RNC, PPh₃, py); insertions of groups such as RNC, SO₂, N₂R⁻, and RC≡CR into the Pd-Pt bond have also been studied.

The molecular structure of $[ClPt(\mu-dppm)_2Pd(C_6F_5)]$ has been established by an X-ray diffraction study.

Results and discussion

Synthesis of hetero-binuclear palladium(I)-platinum(I) complexes $[XPt(\mu-dppm)_2Pd-(C_6F_5)]$ (X = Cl, Br, SnCl₃, C₆F₅)

Reactions of complexes *trans*-Pd(X)(C_6F_5)(η^1 -dppm)₂ (X = Cl. Br. C_6F_5) with Pt(COD)₂ in oxygen-free benzene give the corresponding deep-yellow or orange hetero-binuclear metal-metal bonded Pd^I-Pt^I complexes [XPt(μ -dppm)₂Pd(C_6F_5)] (X = Cl. Br. C_6F_5), according to eqn. 1:

trans-Pd(X)(C_6F_5)(η^1 -dppm)₂ + Pt(COD)₂

= dppm

$$(X = CI(I), Br(II), C_6F_5(III))$$

Complex III can also be obtained by using $Pt(PPh_3)_4$ as the Pt^0 starting material, according to eq. 2:

 $trans-Pd(C_{6}F_{5})_{2}(\eta^{1}-dppm)_{2} + Pt(PPh_{3})_{4} \longrightarrow$ (2) $F_{5}C_{6} - Pt - Pd - C_{6}F_{5} + 4PPh_{3}$

The X-ray structure and ¹⁹F NMR spectrum of complex I (see below) show that the redox condensation process (eq. 1) takes place through the migration of the X group from the Pd^{II} to Pt^{0} center.

In the ¹⁹F NMR spectrum of complex I, the signal, F_o , from the *ortho*-fluorines at $\delta = -117.9$ ppm, is basically a doublet (owing to coupling with the neighbouring *meta*-fluorines), with platinum satellites, the ⁴J(Pt-F_o), 104 Hz having a value similar to that value in similar systems [5], in keeping with the presence of a C₆F₅ group attached to the Pd¹ center. As expected, the F_o resonance in complex III appears as two signals: one corresponding to the two *ortho*-fluorines of the C₆F₅ group bonded to Pt ($\delta - 116.4$ ppm), and the other to the two *ortho*-fluorines of the C₆F₅ group bonded to Pd ($\delta - 109.7$ ppm); both signals are basically doublets, owing to coupling to the neighbouring *meta*-fluorines; the first signal shows platinum satellites with ${}^{3}J(\text{Pt}-F_{o})$ 229 Hz and the other shows platinum satellites with ${}^{4}J(\text{Pt}-F_{o})$ 56 Hz.

Reaction 2 gives a better yield (77%) of complex III than does reaction 1 (40%); on the other hand, samples of complex III made by reaction 1 contain small amounts of an impurity, which was identified by ¹⁹F NMR spectroscopy as the homo-binuclear complex of Pd^I: $[(C_6F_5)Pd(\mu-dppm)_2Pd(C_6F_5)](\delta(F_a) - 111.8 ppm)$.

Complex I reacts with KSCN in methanol to give $[(NCS)Pt(\mu-dppm)_2Pd(C_6F_5)]$ (IV) according to eq. 3:

Treatment of complex I with an equimolar amount of $SnCl_2$ leads to insertion of $SnCl_2$ into the Pt–Cl bond according to eq. 4, as previously observed for other Pd^I and Pt¹ complexes [4c,5–7]:

Analytical, conductivity and melting point data are listed in Table 1. Complexes I-V are non-conducting in $\sim 5 \times 10^{-4} M$ acetone solution (see Table 1).

The IR spectra of complexes I–V show the characteristic absorptions of the dppm ligand (600–400 cm⁻¹ region) along wit those of the C₆F₅ group at ~ 1500, ~ 950 cm⁻¹ [8]. It is noteworthy that the band at ca. 950 cm⁻¹ is shifted to lower wavelengths relative to its position in the palladium(II) precursors, as expected for a decrease in the formal oxidation state of the metal [4a,5]. Complex III shows two close bands (945, 940 cm⁻¹) in this IR region owing to the presence of two different C₆F₅ groups, one attached to Pd^I and the other to Pt^I. Complex I shows ν (Pt–Cl) at 247m,w cm⁻¹, (compare 249 cm⁻¹ for [ClPt(μ -dppm)PdCl] [3]). Complex IV exhibits an absorption at 2085 cm⁻¹ assignable to ν (C=N) of the SCN group [9]. Complex V shows IR bands in the 320–260 region due to ν (Sn–Cl) [10]. (see Table 2).

Insertion reactions

Insertions of a variety of small molecules into the Pd-Pt bond in the complexes $[XPt(\mu-dppm)_2Pd(C_6F_5)]$ (X = Cl (I), C_6F_5 (III)) give new asymmetric "A-frame"

TABLE 1	
ANALYTICAL DATA, CONDUCTIVITIES AND MELTING POINT	ΓS

Complex	Analysis (Found (calcd.) (%))			$\Lambda_M^{(d)}$	M.p.
	C	Н	N	$(ohm^{-1} cm^2)$ mol ⁻¹)	(°C)
$\overline{\text{ClPt}(\mu\text{-dppm})_2\text{Pd}(\text{C}_6\text{F}_5)}(1)$	52.85	3.46		0,80	190d
	(52.85)	(3.48)			
$BrPt(\mu-dppm)_2Pd(C_6F_5)$ (II)	50.67	3.35		0.67	180d
	(51.06)	(3.37)			
$(C_6F_5)Pt(\mu-dppm)_2Pd(C_6F_5)$ (III)	53.03	3.30		0.08	198d
	(53.05)	(3.16)			
$(SCN)Pt(\mu-dppm)_2Pd(C_6F_5)$ (IV)	52.09	3.04	1.19	ne	212d
	(52.84)	(3.42	(1.08)		
$(Cl_3Sn)Pt(\mu-dppm)_2Pd(C_6F_5)$ (V)	45.70	3.35	·	nc	225d
	(45.99)	(3.03)			
$[ClPt(\mu-dppm)_{2}(\mu-N_{2}-p-Tol)Pd(C_{6}F_{5})]BF_{4}$ (VI)	50.55	3.55	L.96	114	230d
	(51.17)	(3.47)	(1.89)		
$[(C_b F_5)Pt(\mu-dppm)_2(\mu-N_2-p-Tol)Pd(C_b F_5)]BF_4$	51.58	3.28	1.74	124	267d
(VII)	(51.46)	(3.00)	(2.02)		
$[ClPt(\mu-dppm)_{2}(\mu-N_{2}C_{6}H_{4}-\rho-NO_{2})Pd(C_{6}F_{5})]BF_{4}$	49.17	3.03	3.20	117	230d
(VIII)	(49.23)	(3.20)	(2.78)		
$[(C_6F_5)Pt(\mu-dppm)_2(\mu-N_2C_6H_4-\omega-NO_2)Pd(C_6F_5)]BF_4$	49.27	2.82	2.56	110	248d
(IX)	(49.76)	(2.94)	(2.56)		
$[ClPt(\mu-dppm)_2(\mu-C_2(CO_2Me)_2)Pd(C_4F_5)](X)$	51.71	3.56		nc	245d
na transforma a na transforma transforma transforma transforma a transforma de la companya de la companya de la	(52.63)	(3.56)			
$[(C_{\beta}F_{5})Pt(\mu-dppm)_{2}(\mu-C_{2}(CO)_{2}Me)_{2})Pd(C_{\beta}F_{5})]$	52.49	3.67		nc	270d
(XI)	(52.81)	(3.25)			
$[ClPt(\mu-dppm)_{2}(\mu-SO_{2})Pd(C_{6}F_{5})] \cdot CH_{2}Cl_{2}(XII)$	48.19	3.28		ne	182d
	(48.15)	(3.26)			
$[(C_6F_5)Pt(\mu-dppm)_5(\mu-SO_5)Pd(C_6F_5)]$ (XIII)	50.21	3.35		ne	170d
	(50.71)	(3.02)			
$[C]Pt(\mu-dppm)_{2}(\mu-p-ToINC)Pd(C, F_{s})](XIV)$	54.78	3.76	1.01	9.5	160d
f	(55.30)	(3.69)	(1.00)		
$[(C, F_{\epsilon})Pt(\mu-dppm)_{2}(\mu-p-To]NC)Pd(C, F_{\epsilon})](XV)$	55.71	3.50	0.81	ne	156d
12 - 0 - 3 () = - F (7 () - 1	(55.26)	(3.79)	(0.9?)		1.000
$[(p-ToINC)Pt(\mu-dppm)_{2}Pd(C_{6}F_{5})]BPh_{4}$ (XVI)	63.26	4.27	0.84	72.9	132d
······································	(63.15)	(4.27)	(0.83)		
$[(p-ToINC)Pt(\mu-dppm)_{\gamma}(\mu-p-ToINC)Pd(C_{\epsilon}F_{\epsilon})]BPh_{\epsilon}$	64.01	4.57	1 33	72.5	140d
(XVII)	(64.38)	(4.38)	(1.56)	1 401	1 ///4
$[(CvNC)Pt(\mu-dppm)_2Pd(C, F_s)]BPh_{A}(XVIII)$	62.14	4.62	0.91	86.7	1324
	(62.73)	(4.53)	(0.84)		
$[(CyNC)Pt(\mu-dppm)_{3}(\mu-CyNC)Pd(C, F_{\epsilon})]BPh_{\epsilon}$	63 50	4 91	1.48	94.4	126d
(XIX)	(63.61)	(4.88)	(1.57)		12000
$f(t-BuNC)Pt(\mu-dppm)_{2}Pd(C, E_{e})BPh_{e}(XX)$	6261	4.85	0.81	87.0	136d
the marie of the apparize dic 613 during the st	(67.76)	14.483	(0.85)	() · ()	() (id
$f(Ph_2P)Pt(\mu_2dppm)_2Pd(C, F_2)BPh_2(XXI)$	64.83	4.68	1 3 4 5 7 7 7 J	6 4 ()	1574
C2-1-24 abb	(64.71)	(4.37)		5- 4 .0	a chailea
$[(py)Pt(\mu-dppm)_{2}Pd(C_{4}F_{4})]BPh_{4}(XXII)$	62.92	4.30	1.00	82.3	134d
T(E') // EE/1. 2(20.5)]	(62.41)	(4.25)	(0.85)	. and . a	1
		1	10000		

a nc = non-conducting.

hetero-bimetallic Pd-Pt compounds. Thus, treatment of I and III with the diazonium salts $(N_2R)BF_4$ ($R = p-CH_3C_6H_4$, or $o-NO_2C_6H_4$) gives complexes VI-IX. MeOOCC=CCOOMe reacts slowly with complexes I and III to give complexes X

Complex	$\nu(\mathrm{cm}^{-1})$					
	C ₆ F ₅	$\nu(C\equiv N)$ or $\nu(C=N)$	600-400 region	Others		
I	1493s,945s		512s,498m,478s,450m,425m	247m "		
II	1490s,945s		515s,503m,482s,425m			
III	1490s,945s,940s		518s,508m,489s,440m,425m			
IV	1493s,946s		517s,503m,482s,435m,425sh	2085s ^b		
v	1495s,946s		520s,505m,483s,445m,425w	318s,298m,292m ^c		
VI	1502s,951s		513s,479s	1060s,br ^d		
VII	1500s,954s		515s,483s	1060s,br ^d		
VIII	1500s,958s		514s,482s	1060s,br ^d ,1525m ^e		
IX	1500s,955s		515s,485s	1060s,br ^{<i>d</i>} ,1525m ^{<i>e</i>}		
Х	1500s,950s		516s,490s	1702s ^f		
XI	1498s,948s		510s493m,478m	1720s ^f		
XII	1498s,951s		512s,496s,470m,423m	1140s,1025m ^g		
XIII	1498s,951s		511s,497s,476m,428m	1145s,1025s ^g		
XIV	1492s,947s	1620(s,br)	512s,507s,480m,472m			
XV	1490s,946s	1620s,br	510s,500s,485m,475m	1580m,610m ^h		
XVI	1495s.948s	2160s	515s,502m,482s	1580m,610m ^h		
XVII	1497s,948s	2170s,1620s,br	518s,509s,485s	1580m,610m ^h		
XVIII	1490s,947s	2165s	513s,498m,480s	1580m,610m ^h		
XIX	1490s,945s	2167s,1620s,br	505s,475m	1580m,610m ^h		
XX	1490s,947s	2150s	517s,500m,482s	1580m,610m ^h		
XXI	1490s,943s		515s,505m,487s	1580m,610m ^h		
XXII	1487s,942s		512s,503m,485s	1595m ⁷ ,1580m,610m ⁷		

TABLE 2 SOME RELEVANT IR ABSORPTIONS

 $\overline{{}^{''}\nu(\text{Pt-Cl}), {}^{b'}\nu(\text{C=N}), \text{SCN group.} {}^{c'}\nu(\text{Sn-Cl}), {}^{d'}\text{BF}_4, {}^{e'}\nu_{as}(\text{NO}_2), {}^{f'}\nu_s(\text{C=O}), {}^{g'}\nu(\text{SO}_2), {}^{h'}\text{BPh}_4, {}^{i'}\text{py}.}$

and XI, respectively. Bubbling of SO₂ through a CH_2Cl_2 solution of complexes I and III gives complexes XII and XIII, respectively (Scheme 1).

Complexes XII and XIII are stable, and no loss of SO_2 was observed under the conditions employed.

Analytical data are listed in Table 1. In acetone solution ($c \sim 5 \times 10^{-4} M$) [11] complexes X-XIII are non conducting whereas complexes VI-IX behave as 1:1 electrolytes.

The IR spectra of the complexes show the characteristic absorptions of the dppm ligand (600-400 cm⁻¹ region) along with those of C₆F₅ group (see above). The change in the formal oxidation state of the metal (Pd, Pt) was expected to increase the frequencies of the C₆F₅ absorption near 950 cm⁻¹ relative to those in the starting complexes I and III, and this was found to be the case for complexes VI-XIII, the increase being larger for the cationic than for the neutral complexes, as expected. Complexes VI-IX show a strong and broad absorption at ~ 1060 cm⁻¹ due to the counterion BF₄⁻ [12]. Complexes VIII-IX exhibit a band at 1525 cm⁻¹ due to $\nu_{as}(NO_2)$ of the N₂R⁺ group [13]. Complexes X and XI show a strong absorption at ~ 1700 cm⁻¹ due to $\nu_s(C=O)$ of the inserted group, shifted to lower energies compared with that for free acetylene ligand (1740 cm⁻¹). Complexes XII and XIII show absorptions at ~ 1145 and ~ 1125 cm⁻¹ due to the symmetric and asymmetric $\nu(S-O)$ stretching frequencies, respectively [14].

SCHEME 1. (a) $[N_2R]BF_4$; (b) MeOOCC=CCOOMe; (c) SO₂.

Reaction with CO

As observed for $[(C_6F_5)Pd(\mu-dppm)_2Pd(C_6F_5)]$ and $[(C_6F_5)Pt(\mu-dppm)_2Pt(C_6F_5)]$ [15]. complex III does not react with CO in benzene or dichloromethane. In contrast, although complex I also does not react with CO in benzene, when CO was bubbled for 15 min through a dichloromethane solution of complex I the appearance of absorptions at 1710s and 2055w cm⁻¹ indicated the presence of a mixture of complexes, one of which contains inserted CO (**A**) and the other coordinated CO (**B**) (eq. 5).

After the CO has been passed for 1 h, the IR spectrum of the dichloromethane solution shows only the absorption at 2055s cm⁻¹ indicating the exclusive presence of the coordinated species **B**, suggesting that the reaction initially gives the insertion product A (eq. 5). All attempts to isolate compound B gave only the starting complex I. The addition of NaBPh₄ to the dichloromethane solution and partial evaporation yielded a solid which showed absorptions assignable to ν (C=O) (2045 cm^{-1}) and to the BPh₄⁻ (610 cm⁻¹), but the analytical results indicate that this solid is not a single species and may be a mixture of the carbonyl derivative $[(OC)Pt(\mu-dppm)_2Pd(C_6F_5)]BPh_4$ and the starting material $[ClPt(\mu-dppm)_2Pd (C_{6}F_{5})$]. This behaviour contrasts with that of similar pentafluorophenyl derivatives of palladium(I) or platinum(I). Bubbling of CO for 30 min through a dichloromethane solution of $[ClPt(\mu-dppm)_2Pt(C_6F_5)]$ gives rise to an IR spectrum with a strong absorption at 2052 but none near 1700 cm⁻¹, indicating the presence of $[COPt(\mu-dppm), Pt(C_{6}F_{5})]Cl$, but attempts to isolate this compound gave only starting material; however when the reaction was carried out in the presence of NaBPh₄, $[(CO)Pt(\mu-dppm)_2Pt(C_6F_5)]BPh_4$ was obtained [5]. Bubbling of CO for 30 min through a dichloromethane solution of $[ClPd(\mu-dppm)_2Pd(C_6F_5)]$ gives rise to absorption at 1715 but none at ~ 2100 cm⁻¹, indicating the exclusive presence of $[ClPd(\mu-dppm)_2(\mu-CO)Pd(C_6F_5)]$ however, only the starting material $[ClPd(\mu-dppm)_2(\mu-CO)Pd(C_6F_5)]$ $dppm)_2 Pd(C_6 F_5)$] was isolated from the solution.

In view of the reactions of $[XM(\mu-dppm)_2M'-X']$ (X' = X = Cl, M = M' = Pd[16], Pt [17]; X = Cl, X' = C₆F₅, M = M' = Pd [15], Pt [5]; X = X' = C₆F₅, M = M' = Pd [15], Pt [15]; X' = X = Cl, M = Pd, M' = Pt [3]; X = Cl, X' = C₆F₅, M = Pt, M' = Pd and X = X' = C₆F₅, M = Pt, M' = Pd (this work)) with CO, it can be concluded that the insertion of CO into the M-M' bond is hindered by the presence of C₆F₅ groups, and that [(OC)M(μ -dppm)M'X]X' formation is only possible if the CO group can be coordinated to a platinum center.

Reaction with isonitriles RNC

The complex $[(C_6F_5)Pt(\mu-dppm)_2Pd(C_6F_5)]$ (III) reacts with *p*-TolNC in benzene to give the insertion products XV (eq. 6), but III does not react with CyNC or t-BuNC under the same conditions.

The reaction of $[ClPt(\mu-dppm)_2Pd(C_6F_5)]$ (I) with RNC is more complicated, because the isonitrile (RNC) can insert into the M-M bond and/or can cause displacement of the terminal halide. The nature of the products obtained depends on the isonitrile and on the solvent used.

Complex I reacts in benzene with a stoicheiometric amount of p-TolNC to give the insertion product XIV. On the other hand, when CyNC is added to a solution of complex I in benzene (1/1 molar ratio) the IR spectrum of the solution shows an absorption due to $\nu(C=N)$, indicating that the inserted isonitrile compound is present. However, the solid obtained by partial evaporation and addition of n-hexane shows bands due to $\nu(C=N)$ and $\nu(C=N)$ that reveal that this solid is a mixture of two isomers $[CIPt(\mu-dppm)_2(\mu-CNCy)Pd(C_6F_5)]$ and $[CyNCPt(\mu-dppm)_2Pd(C_6F_5)]Cl$. Treatment of a solution of complex 1 with t-BuNC (molar ratio 1/1) gives a mixture of both coordinated and inserted derivatives, and the solid isolated from the solution is a mixture of $[t-BuNCPt(\mu-dppm)_2Pd(C_5F_5)]Cl$ and starting material.

In order to obtain unitary cationic derivatives the reaction of complex I with RNC (molar ratio 1/1) was carried out in acetonitrile and in the presence of NaBPh₄ (See Scheme 2). When an excess of RNC (R = p-TolNC, C_NNC) is used, the corresponding cationic complexes [RNCPt(μ -dppm)₂(μ -RNC)Pd(C_bF_5)]BPh₄ (R = p-Tol (XVII). Cy (XIX)) containing both inserted and coordinated isonitriles are obtained. Reaction of I with an excess of t-BuNC under the same conditions gives the cationic derivative containing only coordinated isonitrile. [t-BuNCPt(μ -dppm)₂Pd(C_bF_5)]BPh₄ (XX).

Addition of NaBPh₄ to an acetonitrile solution of $[ClPt(\mu-dppm)_2(\mu-p-TolNC)Pd(C_6F_5)]$ (XIV) results, as expected, in bridging-to-terminal migration of the isonitrile and formation of the cationic derivative $[(p-TolNC)Pt(\mu-dppm)_2Pd(C_6F_5)]BPh_4$ (XVI). The reactions of RNC with I are summarized in Scheme 2.

The tendency of RNC to give insertion products decreases in the sequence p-TolNC > CyNC > t-BuNC, in agreement with our previous observations on palladium(I) or platinum(I) derivatives [4a,4c,5], and in keeping with the insertion of isocyanides into M–C bonds [18,19].

SCHEME 2. (a) RNC in acetonitrile; (b) RNC in benzene; (c) RNC in an excess.

The IR spectra of the isocyanide complexes were very valuable for showing the presence of coordinated C \equiv N, with ν 2100–2200 cm⁻¹, and/or inserted C=N, with ν 1500–1650 cm⁻¹ (see Table 2). It is noteworthy that complexes XIV, XV, XVII and XIX with inserted isonitriles have their C₆F₅ band (~ 950 cm⁻¹) at wavelengths very similar to that observed for complexes with Pd–Pt bonds (I–V), indicating that the insertion of the isonitrile into the Pd^I–Pt^I bond does not appreciably change the electron density around the metal center [4a,20] (see Table 2). The IR spectra of complexes XVII–XX show absorptions at 1580 and 610 cm⁻¹ due to the anion BPh₄⁻. Bands assigned to the dppm ligand in the 600–400 cm⁻¹ region are listed in Table 2.

Table 1 lists the conductivities of acetone solutions $(c, \sim 5 \times 10^{-4} M)$ of these complexes, which are as expected. The low but definite conductivity of the solution of complex XIV arises from the elimination-coordination (eq. 7) equilibrium in this solvent:

 $ClPt(\mu-dppm)_2(\mu-p-TolNC)Pd(C_6F_5) \rightleftharpoons$

 $[(p-TolNC)Pt(\mu-dppm)_2Pd(C_6F_5)]Cl$ (7)

The existence of this equilibrium is confirmed by IR spectroscopy, the IR spectrum of the acetone solution showing an absorption at 2140 cm⁻¹ corresponding to coordinated isonitrile [4c].

TABLE 3

Formula	$C_{56}H_{44}ClF_5P_4PdPt$
М	1272.8
Crystal system	Monoclinic
Space group	$P2_1/c$
a (Å)	16.280(4)
b (Å)	12.959(4)
c (Å)	25.033(10)
β(°)	91.42(3)
$V(Å^3)$	5279.7
Diffractometer	Enraf-Nonius CAD4
<i>T</i> (K)	293 ± 1
Radiation	Mo- K_{α}
λ (Å)	0.71069
$\mu(\text{Mo-}K_{\alpha})(\text{cm}^{-1})$	30.5. Empirical absorption correction was
	applied (28)
θ-range (°)	1-22°
Mode	$\theta - 2\theta$ scans
Data measured	6438
Data used	4436 $(F > 6\sigma(F))$
Solution	Patterson; ΔF syntheses
Refinement	Block-diagonal least-squares
Model	C and H isotropic, all other atoms anisotropic.
	Rigid planar hexagons. H atoms in calculated
	positions. Group U's for H atoms (0.08) .
Weighting scheme	$w^{-1} = [\sigma^2(F) + 0.0006F^2]$
R _w	0.0553
R	0.0587
Variables	237

CRYSTAL DATA FOR $ClPt(\mu-dppm)_2Pd(C_6F_5)$

360

TABLE 4 FRACTIONAL COORDINATES IN ClPt(µ-dppm)₂Pd(C₆F₅)

Atom).	
Pt	0.22581(4)	0.26558(4)	0.35196(2)
Pd	0.23783(6)	0.40994(7)	0,42630(3)
Cl	0.2172(3)	0.1297(4)	0,28430(16)
P(1)	0.09561(23)	0.22884(27)	0.37507(13)
P(2)	0.35724(22)	0.29894(27)	0.32956(13)
P(3)	0.31349(23)	0.50349(26)	0.36864(14)
P(4)	0.16306(22)	0.30326(26)	0.47744(13)
F(1)	0.1463(8)	0.6204(9)	0,4581(6)
F(2)	0.1594(13)	0.7558(9)	0,5351(9)
F(3)	0.2836(14)	0.7276(15)	0.6100(8)
F(4)	0.3843(12)	0.5559(19)	0.6056(6)
F(5)	0.3660(7)	0.4286(10)	0.5235(4)
c'n	0.4016(8)	0.4243(10)	0.3521(5)
C(2)	0.0650(8)	0.2775(10)	0.4417(5)
C(3)	0.2540(9)	0.5172(11)	0.4872(6)
C(4)	0.2063(12)	0.6004(14)	0.4928(7)
C(5)	0.2120(14)	0.6771(17)	0.5355(9)
C(6)	0.2698(16)	0.6534(20)	0,5694(10)
C(7)	0.3216(17)	0.5783(20)	0.5700(11)
C(8)	0.3119(12)	0.5101(14)	0.5243(7)
C(10)	0.1355(5)	0.0209(8)	0.3919(4)
C(11)	0.1176(5)	0.0832(8)	() 3998(4)
C(12)	0.0364(5)	0.1174(8)	0.3968(4)
C(13)	- 0.0269(5)	0.0475(8)	0.3857(4)
C(14)	0.0091(4)	0.0565(8)	0.3778(4)
C(9)	0.0721(5)	0.0907(8)	0.3809(4)
H(10)	0.1983(5)	0.0474(8)	0.3943(4)
H(11)	0.1667(5)	0.1373(8)	0.4084(4)
H(12)	0.0226(5)	-0.1980(8)	0,4029(4)
H(13)	0.0898(5)	0.0740(8)	0.3833(4)
H(14)	-0.0581(5)	0.1106(8)	0.3693(4)
C(16)	0.0356(7)	0.2743(9)	0.2763(5)
C(17)	0.0215(7)	0.3104(9)	0.2382(5)
C(18)	0.0960(6)	0.3517(9)	0.2544(4)
C(19)	-0.1134(6)	0.3569(9)	0.3086(5)
C(20)	-0.0563(6)	0.3208(9)	0.3467(5)
C(15)	0.0182(6)	0.2795(9)	0.3305(4)
H(16)	0.0933(6)	0.2423(9)	0.2637(5)
H(17)	0.0080(7)	0.3063(9)	0.1962(5)
H(18)	0.1402(6)	0.3796(9)	0.2250(5)
H(19)	- 0.1710(7)	0.3889(9)	0.3212(5)
H(20)	0.0697(6)	0.3249(9)	0.3886(5)
C(22)	0.4476(5)	0.2682(8)	0.2366(4)
C(23)	0.4575(5)	0.2662(8)	0.1814(4)
C(24)	0.3932(5)	0.2970(8)	0.1472(4)
C(25)	0.3189(5)	0.3297(8)	0.1681(4)
C(26)	0.3090(5)	0.3317(8)	0.2233(4)
C(21)	0.3733(5)	0.3009(8)	0.2575(4)
H(22)	0.4973(5)	0.2444(8)	0.2631(4)
H(23)	0.5150(5)	0.2409(8)	0.1652(4)
H(24)	0.4009(5)	0.2954(8)	0.1044(4)
H(25)	0.2692(5)	0.3535(8)	0.1415(4)
H(26)	0.2515(5)	0.3570(8)	0.2394(4)

TABLE 4 (continued)

Atom	x	у	2
C(28)	0.4190(7)	0.1034(9)	0.3354(4)
C(29)	0.4726(7)	0.0254(10)	0.3525(4)
C(30)	0.5364(7)	0.0478(9)	0.3889(4)
C(31)	0.5465(7)	0.1481(9)	0.4082(4)
C(32)	0.4929(7)	0.2260(9)	0.3911(4)
C(27)	0.4291(7)	0.2037(9)	0.3547(4)
H(28)	0.3696(7)	0.0860(9)	0.3072(4)
H(29)	0.4647(7)	-0.0522(9)	0.3376(5)
H(30)	0.5779(7)	-0.0125(9)	0.4021(5)
H(31)	0.5959(7)	0.1654(9)	0.4364(4)
H(31)	0.5008(7)	0.3037(9)	0.4060(5)
C(34)	0.3206(5)	0.7167(8)	0.3845(4)
C(35)	0.3519(6)	0.8069(8)	0.4081(4)
C(36)	0.4213(6)	0.8015(8)	0.4418(4)
C(37)	0.4596(6)	0.7068(8)	0.4518(4)
C(38)	0.4283(6)	0.6172(8)	0.4281(4)
C(33)	0.3588(6)	0.6220(8)	0.3945(4)
H(34)	0.2668(6)	0.7205(8)	0.3584(4)
H(35)	0.3223(6)	0.8796(8)	0.4004(4)
H(36)	0.4455(6)	0.8709(8)	0.4601(4)
H(37)	0.5134(6)	0.7030(8)	0.4778(4)
H(38)	0.4579(6)	0.5439(8)	0.4359(4)
C(40)	0.3181(5)	0.5875(8)	0.2678(5)
C(41)	0.2851(5)	0.6157(8)	0.2179(4)
C(42)	0.2020(5)	0.5988(8)	0.2060(4)
C(43)	0.1519(5)	0.5538(8)	0.2439(5)
C(44)	0.1849(5)	0.5256(8)	0.2938(4)
C(39)	0.2680(5)	0.5424(8)	0.3057(4)
H(40)	0.3824(5)	0.6005(8)	0.2770(5)
H(41)	0.3239(5)	0.6505(8)	0.1885(4)
H(42)	0.1765(5)	0.6206(8)	0.1674(4)
H(43)	0.0876(5)	0.5407(8)	0.2347(4)
H(44)	0.1462(5)	0.4907(8)	0.3232(4)
C(46)	0.0522(5)	0.3858(8)	0.5511(3)
C(47)	0.0285(5)	0.4124(8)	0.6025(4)
C(48)	0.0830(5)	0.3985(8)	0.6458(3)
C(49)	0.1611(5)	0.3580(8)	0.6377(4)
C(50)	0.1847(6)	0.3314(8)	0.5864(4)
C(45)	0.1303(5)	0.3453(8)	0.5430(4)

Synthesis of the cationic complexes $[LPt(\mu-dppm)_2Pd(C_6F_5)]BPh_4$ ($L = PPh_3$ (XXI), py (XXII))

Addition of neutral ligands L to complex I suspended in methanol induces complete dissolution and subsequent addition of NaBPh₄ permits the isolation of $[LPt(\mu-dppm)_2Pd(C_6F_5)]$ BPh₄ (see eq. 8).

Complexes XXI and XXII behaves as 1/1 electrolytes in 5×10^{-4} M acetone solution.

Their IR spectra show the presence of BPh_4^- , C_6F_5 and dppm. Complex XXII shows a band at 1595 due to the py ligand [21], (see Table 2).

Structure of $ClPt(\mu$ -dppm)₂ $Pd(C_6F_5)$

The structure of complex I was determined by single crystal X-ray diffraction. General crystallographic information is presented in Table 3. Positional parameters and selected bond distances and angles are given in Tables 4 and 5. respectively, and lists of hydrogen atom coordinates, thermal parameters, and structure factors are available from the authors. Figure 1 shows the molecular structure of the complex which is similar to other analogous Pd^I or Pt¹ derivatives [6,22,23] and constists of Pt-Cl and Pd-C₆F₅ fragments linked by a Pd-Pt bond and two bridging bis(diphenylphosphino)methane ligands. The distance Pd-Pt is 2.643(1) Å, in the same range or somewhat shorter than the distances found in analogous Pd^I (2.644(2) Å in ClPd(μ -dppm)₂PdSnCl₃ [6], 2.699 Å in BrPd(μ -dppm)₂PdBr [22], or Pt^I (2.651(1) Å in ClPt(μ -dppm)₂PtCl [23]), species. The coordination geometries about the Pd and Pt centers are approximately planar (the dihedral angles between the planes Pd-Pt-P(1), P(2)-Pt-Cl and Pd-Pt-P(4), Pd-P(3)-C(3) are 178.23 and 175.85°,

TABLE 5

SELECTED MOLECULAR GEOMETRY PARAMETERS FOR $ClPt(\mu-dppm)_2Pd(C_nF_n)$

Bond lenghts (Å)	
Pt-Pd	2.643(1)
Pt-Cl	2.444(4)
Pd-C(3)	2.076(14)
Pt-P(1)	2.262(4)
Pt-P(2)	2.267(4)
Pd-P(3)	2.271(4)
Pd-P(4)	2.260(3)
C(1)- P(2)	1.859(13)
C(1)-P(3)	1.820(13)
C(2)-P(1)	1.862(12)
C(2)-P(4)	1.841(13)
Bond angles (°)	
Pt-Pd-P(4)	86.2(1)
$Pt_1Pd-P(3)$	87.8(1)
Pt-Pd-C(3)	175.9(4)
P(3) - Pd - P(4)	174.0(1)
P(3) - Pd - C(3)	92.8(4)
P(4)-Pd-C(3)	93.1(4)
Pd-Pt-P(1)	91.3(1)
Pd-Pt-P(2)	89.2(1)
Pd-Pt-Cl	178.7(1)
P(1) - Pt - P(2)	178.7(1)
P(1) - Pt - Cl	89.3(1)
P(2)-Pt-Cl	90.2(1)
P(1)-C(2)-P(4)	104.4(6)
P(2)-C(1)-P(3)	105.1(6)

Fig. 1. Perspective views of $\text{ClPt}(\mu\text{-dppm})_2\text{Pd}(C_6F_5)$: (a) Complete molecule. (b) Central section with Ph rings removed, showing numbering of key atoms.

respectively). The Cl-Pt-Pd-C(3) chain is almost linear, and the angles Cl-Pt-Pd or Pt-Pd-C(3) are 178.7(1) and $175.9(4)^{\circ}$, respectively.

The angles between mutually *cis*-palladium or platinum-ligand bonds are in the range 86.2–93.1° and the corresponding angles between mutually *trans*-palladium or platinum-ligands bonds are in the range 174.0–178.7° (see Table 5). The Pt-Cl distance (2.444(4) Å) is longer than that for other binuclear Pt^I derivatives (2.401(5) and 2.408(5) Å in ClPt (μ -dppm)₂PtCl [23], 2.382(10) and 2.426(9) Å in [PtCOCl₂]₂²⁻ [24], suggesting a rather high *trans*-influence of the Pd-Pt bond. In accord with such a *trans*-influence the Pd-C(3) distance is (2.076(14) Å) longer than that found for other pentafluorophenyl palladium(II) derivatives (2.029(4) and 2.012(6) Å in *cis*-Pd(C₆F₅)₂(S₂CPCy₃) [25]). The distances Pd-P or Pt-P are in the same range as those in other similar Pd^I [5,6,22] or Pt^I [23] derivatives.

The coordination planes around the palladium and platinum atoms are twisted about the Pt-Pd bond and the dihedral angle between them is 37.57° , similar to those in BrPd(μ -dppm)₂PdBr (39°) [22] and ClPt(μ -dppm)₂PtCl (38.6°) [23].

Experimental

C, H and N analyses were carried out on a Perkin-Elmer 240 microanalyzer. Melting points were determined with a Buchi apparatus and are uncorrected. Conductivities were measured in approx. $5 \times 10^{-4} M$ solutions with a Philips PW 9501/01 conductimeter. The IR spectra were recorded (in the 4000-200 cm⁻¹ range) on a Perkin–Elmer spectrophotometer using Nujol mulls between polyethylene sheets. ¹⁹F NMR spectra were recorded with CDCl₃ solutions on a Varian XL-200; δ is relative to CFCl₃.

The complexes $Pt(COD)_2$ [26], $Pt(PPh_3)_4$ [27], $Pd(C_6F_5)_2(dppm)_2$ [4a] $PdCl(C_6-F_5)(dppm)_2$ [4a], $PdBr(C_6F_5)(dppm)_2$ [4a], were prepared as described elsewhere.

$XPt(\mu-dppm), Pd(C_6F_5)$ (X = Cl (I), Br (II), C_6F_5 (III)) from Pt(COD),

To a solution of 0.137 g (0.33 mmol) of $Pt(COD)_2$ in 20 ml of benzene (deoxygenated) under nitrogen was added 0.33 mmol of $PdX(C_6F_5)(dppm)_2$ (X = Cl, Br, C_6F_5). The initially colourless solution turned orange, and was stirred for 1 h at room temperature, then concentrated to -5 ml. Addition of Et 20 or n-hexane then gave the product as a deep yellow (I, III) or orange (II) precipitate. Yields. I: 80%, II: 65%, III: 40%.

$(C_6F_5)Pt(\mu$ -dppm), $Pd(C_6F_5)$ (III) from $Pt(PPh_3)_4$

To a solution of 0.300 g (0.24 mmol) of $Pt(PPh_3)_4$ in 30 ml of deoxygenated benzene under nitrogen, was added 0.291 g (0.24 mmol) of $Pd(C_6F_5)_2(dppm)_2$. The mixture was refluxed for 30 min then evaporated almost to dryness. Addition of 10 ml of Et₂O produced a deep yellow precipitate (III). Yield 77%.

$(SCN)Pt(\mu-dppm)_{2}Pd(C_{6}F_{5})$ (IV)

To a suspension of 0.100 g (0.07 mmol) of I in 20 ml of methanol, was added 0.007 g (0.07 mmol) of KSCN. The mixture was stirred for 5 h at room temperature then evaporated to ≈ 10 ml, and the resulting solid was filtered off, washed with 4×10 ml of water, and dried under vacuum. Yield 70%.

$(Cl_3Sn)Pt(\mu-dppm), Pd(C_6F_5)(V)$

To a solution of 0.1 g (0.07 mmol) of I in 30 ml of CH_2Cl_2 was added 0.014 g (0.07 mmol) of $SnCl_2$. The yellow solution turned orange. The mixture was stirred for 90 min at room temperature, then evaporated to ~ 10 ml and i-PrOH/hexane (1/1, 30 ml) was added to precipitate complex V in 65% yield.

 $[XPt(\mu-dppm)_{2}(\mu-N_{2}R)Pd(C_{6}F_{5})]BF_{4}; (X = Cl, R = p-CH_{3}C_{6}H_{4}(VI); X = C_{6}F_{5}, R = p-CH_{3}C_{6}H_{4}(VII); X = Cl, R = o-NO_{2}C_{6}H_{4}(VIII); X = C_{6}F_{5}, R = o-NO_{3}C_{6}H_{4}(IX))$

To a cooled (-25°C) solution of I (0.11 g, 0.07 mmol) in acetone (40 ml) was added 0.016 g (0.07 mmol) of $(p\text{-}CH_3C_6H_4N_2)BF_4$. The solution was stirred at -25°C for 15 min and then allowed to reach room temperature during ca. 30 min. Evaporation to ca. 5 ml and addition of Et₂O (20 ml) afforded VI, which was recrystallized from acetone/Et₂O. Yield: 70%.

Similar procedures gave: VII: 60% yield; VIII: 66% yield; IX: 61% yield.

$[XPt(\mu-dppm)_{2}(\mu-C_{2}(CO_{2}Me)_{2})Pt(C_{6}F_{5})]; (X = Cl(X); X = C_{6}F_{5}(XI))$

To a solution of I (0.100 g, 0.078 mmol) in CH_2Cl_2 (30 ml) were added 9.6 μ l (0.078 mmol) of MeO₂CC=CCO₂Me. The mixture, protected from the light, was stirred at room temperature for 6 d, then evaporated to ca. 3 ml. Addition of Et₂O (40 ml) afforded X in 45% yield. XI was obtained similarly in 50% yield.

 $[XPt(\mu-dppm)_2(\mu-SO_2)Pt(C_6F_5)]$ (X = Cl (XII); X = C_6F_5 (XIII))

 SO_2 was bubbled for 1 h at room temperature through a solution of I (0.142 g, 0.100 mmol) in 4 ml of CH_2Cl_2 . The initial yellow solution turned orange. Et₂O (50 ml) was added to precipitate XII, which separated with one molecule of CH_2Cl_2 of crystallization. Yield: 90%.

A similar procedure gave complex XIII; 92% yield.

$XPt(\mu$ - $dppm)_2(\mu$ -p- $TolNC)Pd(C_6F_5)$ (X = Cl (XIV); $X = C_6F_5$ (XV))

To a solution of 0.178 g (0.138 mmol) of I in 40 ml of benzene was added *p*-TolNC (17.4 μ l, 0.138 mmol). After 2 h stirring at room temperature the solution was concentrated to ca. 5 ml and hexane (ca. 30 ml) was added to precipitate XIV, which recrystallized from CH₂Cl₂/n-hexane. Yield 69%.

XV was obtained similarly from III in 81% yield.

$[(RNC)Pt(\mu - dppm), Pd(C_6F_5)]BPh_4$ (R = p-TolNC (XVI); R = CyCN (XVIII))

(a) From I. To a suspension of 0.100 g (0.07 mmol) of I in 10 ml of NCMe was added p-TolNC (9.8 μ l, 0.07 mmol). The suspension was stirred for 5 min at room temperature, then 0.026 g (0.07 mmol) of NaBPh₄ was added to the resulting yellow-orange solution and the mixture was stirred for 1 h. The solution was filtered and evaporated, and the residual oil was stirred with i-PrOH/n-hexane to give crystalline XVI, which was dried at 80°C. Yield 65%.

XVIII was obtained similarly; 62% yield.

(b) Synthesis of XVI from XIV. A solution of 0.070 g (0.01 mmol) of XIV in 15 ml of NCMe was stirred 1 h at room temperature, then a solution of 0.017 g (0.05 mmol) of NaBPh₄ in 20 ml of i-PrOH was added. Evaporation to dryness left a pale yellow residue, which was washed with 2×10 ml of water and dried. Yield 80%.

 $[(RNC)Pt(\mu-dppm)_2(\mu-RNC)Pd(C_6F_5)]BPh_4 \quad (R = p-TolNC \quad (XVII); \quad R = CyNC \quad (XIX))$

To a suspension of 0.100 g (0.07 mmol) of I in 10 ml of NCMe, was added *p*-TolNC (21 μ l, 0.16 mmol). The suspension was stirred for 5 min at room temperature, then 0.026 g (0.07 mmol) of NaBPh₄ was added and the mixture was stirred for 1 h then evaporated. The residual oil was stirred with i-PrOH/hexane to give crystalline XVII. Yield 70%.

XIX was obtained similarly. In this case, the product was recrystallized from NCMe/i-PrOH in the presence of ~ 5 μ l of CyNC. Yield 63%.

$[(t-BuNC)Pt(\mu-dppm)_2Pd(C_6F_5)]BPh_4$ (XX)

Complex XX is obtained by the method described for the preparation of complex XVIII using a 2.5/1 molar ratio of t-BuNC to I. Yield 60%.

$[(L)Pt(\mu-dppm), Pd(C_6F_5)] BPh_4 (L = PPh_3 (XXI); L = py (XXII))$

 PPh_3 (0.041 g, 0.155 mmol) was added to a suspension of I (0.100 g, 0.078 mmol) in 15 ml of MeOH. Stirring at room temperature for 10 min resulted in complete dissolution. After addition of NaBPh₄ (0.030 g, 0.087 mmol) the stirring was continued for 15 min. The solution was evaporated to dryness and the residue recrystallized from acetone/i-PrOH. Yield 80%.

A similar procedure gave XXII; Yield 75%.

Acknowledgement

We thank the CAICYT (Spain) for financial support and the Scientific Office of NATO for a travel grant.

References

- 1 R.J. Puddephatt, Chem. Soc. Rev., 12 (1983) 99.
- 2 (a) Ref. 1 and references therein; (b) R.J. Puddephatt, K.A. Azam, R.H. Hill, M.P. Brown, C.D. Nelson, R.P. Moulding, K.R. Seddon and M.C. Grossel, J. Am. Chem. Soc., 105 (1983) 5642; (c) M.P. Brown, A. Yavari, L. Manojlović-Muir and K.W. Muir, J. Organomet, Chem., 256 (1983) C19; (d) R.H. Hill and R.J. Puddephatt, Organometallics, 2 (1983) 1472; (c) R.H. Hill and R.J. Puddephatt, J. Am. Chem. Soc., 105 (1983) 5797; (f) S.S.M. Ling, R.J. Puddephatt, L. Manojlović-Muir and K.W. Muir, Inorg. Chim. Acta, 77 (1983) L95, (g) K.R. Grundy and K.N. Robertson, Organometallics, 2 (1983) 1736; (h) S. Muralidharan and J.H. Espenson, Inorg. Chem., 22 (1983) 2786; (i) S. Muralidharan and J.H. Espenson, Inorg. Chem., 22 (1983) 2786; (i) S. Muralidharan and J.H. Espenson, Inorg. Chem., 21 (1983) 2786; (i) S. Muralidharan and J.H. Espenson, Inorg. Chem., 22 (1983) 2786; (i) S. Muralidharan and J.H. Espenson, Inorg. Chem., 23 (1984) 4069; (i) C.L. Lee, B.R. James, D.A. Nelson and R.T. Haflen, Organometallics, 3 (1984) 1360; (m) C.R. Langrick, P.G. Pringle and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1985) 1015.
- 3 P.G. Pringle and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1983) 889.
- 4 (a) R. Usón, J. Forniés, P. Espinet, F. Martínez, C. Fortuño and B. Menjón, J. Organomet. Chem., 256 (1983) 365; (b) R. Usón, J. Forníes, P. Espinet and C. Fortuño, Inorg. Chim. Acta. 87 (1984) 207;
 (c) P. Espinet, J. Forniés, C. Fortuño, G. Hidalgo, F. Martinez, M. Tomás and A.J. Welch, J. Organomet. Chem., in press.
- 5 R. Usón, J. Forniés, P. Espinet and C. Fortuño, J. Chem. Soc., Dalton Trans., in press.
- 6 M.M. Olmstead, L.S. Benner, H. Hope and A.L. Balch, Inorg. Chim. Acta, 32 (1979) 193.
- 7 M.G. Grossel, R.P. Moulding and K.R. Seddon, Inorg. Chim. Acta, 64 (1982) L275.
- 8 E. Maslowsky Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437 and references given therein.
- 9 K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds, 2nd Ed., Wiley-Interscience, New York, 1970, p. 187.
- 10 D.F. Schriver and M.P. Johnson, Inorg. Chem., (1967) 1265.
- 11 W.J. Geary, Coord. Chem. Rev., 81 (1971) 7.
- 12 N.N. Greenwood, J. Chem. Soc., (1959) 3811.
- 13 M. Francel, J. Am. Chem. Soc., 74 (1952) 1265.
- 14 D.M.P. Mingos, Trans. Met. Chem., 3 (1978) 1.
- 15 R. Usón, et al., unpublished results.
- 16 (a) L.S. Benner and A.L. Balch, J. Am. Chem. Soc., 100 (1978) 6099; (b) M.M. Olmstead, H. Hope, L.S. Benner and A.L. Balch, J. Am. Chem. Soc., 99 (1977) 5502.
- 17 (a) Lj. Manojlović-Muir, K.W. Muir and T. Solomun, J. Organomet. Chem., 179 (1979) 479; (b) M.P. Brown, A.N. Keith, Lj. Manojlović-Muir, K.W. Muir, R.J. Puddephatt and K.R. Seddon, Inorg. Chim. Acta, 34 (1979) 1.223.
- 18 S. Otsuka, A. Nakamura and T. Yoshida, J. Am. Chem. Soc., 91 (1969) 7196.
- 19 R. Usón, J. Fornies, P. Espinet and E. Lalinde, J. Organomet. Chem., 254 (1983) 371
- 20 P. Brant, L.S. Benner and A.L. Balch, Inorg. Chem., (1979) 3422.
- 21 J.R. During, B.R. Mitchell, D.W. Sink, J.N. Willis Jr. and A.S. Wilson. Spectrochim. Acta, A. 23 (1967) 1121.
- 22 (a) R.G. Holloway, B.R. Renfold, R. Colton and J. McCormick, J. Chem. Soc., Chem. Commun., (1976) 485; (b) R. Colton, M.J. McCormick and D. Pannan, Aust. J. Chem., 31 (1978) 1425.
- 23 Lj. Manojlović-Muir, K.W. Muir and T. Solomun, Acta Cryst., B35 (1979) 1237
- 24 A. Modinos and P. Woodward, J. Chem. Soc., Dalton Trans., (1975) 1516.
- 25 R. Usón, J. Forniés, M. Usón, J.F. Yagüe, P.G. Jones and K. Meyer-Bäse, J. Chem. Soc., Dalton Trans., (1986) 947.
- 26 J. Spencer, Inorg. Synth., 19 (1979) 213.
- 27 L. Malatesta and C. Caiello, J. Chem. Soc., (1958) 2323.
- 28 N. Walker and D. Stuart, Acta Cryst., A39 (1983) 158.